8. [11 points] Let \mathcal{C} be the curve given by the equation $81-\left(x^{2}+y^{2}\right)^{2}=2 x y^{2}$. The graph of \mathcal{C} is shown below.

a. [2 points] Find the coordinates (x, y) of the point A.

Solution: Since the point A lies at the intersection of the y -axis and the curve \mathcal{C}, then $x=0$ and y satisfies $81-\left(0^{2}+y^{2}\right)^{2}=2(0) x y^{2}$. Hence $y^{4}=81$ or $y=3$.

$$
A=(0,3)
$$

b. [6 points] Find $\frac{d y}{d x}$. Show all your computations step by step.

Solution:

$$
\begin{aligned}
\frac{d}{d x}\left(81-\left(x^{2}+y^{2}\right)^{2}\right) & =\frac{d}{d x}\left(2 x y^{2}\right) \\
-2\left(x^{2}+y^{2}\right)\left(2 x+2 y \frac{d y}{d x}\right) & =2 y^{2}+4 x y \frac{d y}{d x} \\
-4 x\left(x^{2}+y^{2}\right)-4 y\left(x^{2}+y^{2}\right) \frac{d y}{d x} & =2 y^{2}+4 x y \frac{d y}{d x} \\
-4 y\left(x^{2}+y^{2}\right) \frac{d y}{d x}-4 x y \frac{d y}{d x} & =2 y^{2}+4 x\left(x^{2}+y^{2}\right) \\
\frac{d y}{d x} & =-\frac{2 y^{2}+4 x\left(x^{2}+y^{2}\right)}{4 y\left(x^{2}+y^{2}\right)+4 x y}
\end{aligned}
$$

c. [3 points] Find an equation of the tangent line $L(x)$ to the graph of \mathcal{C} at A. Show all your work.

Solution: The slope of $L(x)$ is

$$
m=-\frac{2(3)^{2}+4(0)\left((0)^{2}+(3)^{2}\right)}{4(3)\left((0)^{2}+(3)^{2}\right)+4(0)(3)}=-\frac{18}{108}=-\frac{1}{6} .
$$

Hence using the point A and the slope-intercept formula for the line $L(x)$, we get $L(x)=-\frac{1}{6} x+3$.

