9. [7 points] Let A and B be two constants and

$$
h(x)= \begin{cases}2 B x+A \ln (x) & 0<x \leq 1 \\ \frac{4 A}{x}+B x-1 & 1<x \leq 2 .\end{cases}
$$

Find all the values of A and B that make the function $h(x)$ differentiable on the interval $0<x<2$. If no such values exist, write NONE. Justify your answer.

Solution: Since $y=2 B x+A \ln (x)$ and $y=\frac{4 A}{x}+B x-1$ are differentiable on the intervals $(0,1)$ and $(1,2)$, then we only need to choose A and B so that $h(x)$ is differentiable at $x=1$.
In order to obtain continuity at $x=1, A$ and B must satisfy

$$
\lim _{x \rightarrow 1^{-}} h(x)=\lim _{x \rightarrow 1^{-}} 2 B x+A \ln (x)=\mathbf{2 B}=\mathbf{4 A}+\mathbf{B}-\mathbf{1}=\lim _{x \rightarrow 1^{+}} \frac{4 A}{x}+B x-1=\lim _{x \rightarrow 1^{+}} h(x)
$$

This equation can be simplified to $\mathrm{B}=\mathbf{4 A}-1$.
Since $y=2 B x+A \ln (x)$ and $y=\frac{4 A}{x}+B x-1$ are differentiable functions on (0,4), then differentiability of $h(x)$ at $x=1$ follows if their derivatives $y^{\prime}=2 B+\frac{A}{x}$ and $y^{\prime}=-\frac{4 A}{x^{2}}+B$ are equal at $x=1$. This yields $2 \mathrm{~B}+\mathrm{A}=-\mathbf{4} \mathrm{A}+\mathrm{B}$ or $\mathrm{B}=-\mathbf{5} \mathrm{A}$.

Solving both equations $\mathbf{B}=-\mathbf{5 A}$ and $\mathbf{B}=\mathbf{4 A}-\mathbf{1}$, we get that $-5 A=4 A-1$. Therefore $\mathbf{A}=\frac{\mathbf{1}}{\mathbf{9}}$ and then $\mathbf{B}=-\frac{\mathbf{5}}{\mathbf{9}}$.

