1. [17 points] Let $g(x)$ and $h(x)$ be two functions. The graphs of $g^{\prime}(x)$ and $h^{\prime \prime}(x)$ are shown below.

a. [2 points] At which of the following values of x is $g(x) \underline{\text { not }}$ differentiable?

$$
\begin{array}{cccccc}
x=2 & x=4 & x=5 & x=6 & x=7 \quad \text { NONE OF THESE }
\end{array}
$$

b. [2 points] For which of the following values of x does $g(x)$ have a local maximum?

$$
x=2 \quad x=4 \quad x=5 \quad x=6 \quad x=7.5 \quad \text { NONE OF THESE }
$$

c. [2 points] For which of the following values of x does $g(x)$ have an inflection point?
$x=2$
$x=3$
$x=4 \quad x=5$
$x=7.5$
NONE OF THESE
d. [2 points] On which of the following intervals is $g(x)$ linear?
$(0,2)$
$(4,6)$
$(6,7)$
$(6,8)$
$(7,8)$
NONE OF THESE
e. [2 points] For which of the following values of x does $g(x)$ attain a global maximum on the interval $[1,7]$?

$$
x=2 \quad x=4 \quad x=5 \quad x=6 \quad x=7 \quad \text { NONE OF THESE }
$$

f. [2 points] Over which of the following intervals is $h(x)$ concave up on the entire interval?
$(0,1)$
$(1,3)$
$(2,4)$
NONE OF THESE
g. [2 points] On which of the following intervals is the function $h^{\prime}(x)$ (the derivative of $\left.h(x)\right)$ decreasing over the entire interval?
$(0,1)$
$(1,3)$
$(2,3)$
NONE OF THESE
h. [3 points] If $h^{\prime}(4)=0$, which of the following statements must be true?
A. $x=4$ is a local maximum of $h(x)$.
D. $x=4$ is a critical point of $h(x)$.
B. $x=4$ is a local minimum of $h(x)$.
E. $x=4$ is an inflection point of $h(x)$.
C. $x=4$ is an inflection point of $h^{\prime}(x)$.
F. NONE OF THESE

