1. [13 points] Let g be a function such that g''(x) is defined for all real numbers. A table of values of g'(x), the derivative of g(x), is given below.

x	-5	-1	0	3	4	7
g'(x)	3	0	-4	-3	0	2

Assume that between each pair of consecutive values of x given in the table, g'(x) is either always increasing or always decreasing.

For parts **a.**–**f.**, circle <u>all</u> correct choices.

a. [1 point] At which of the following values does g(x) have a critical point?

x = -5 x = -1 x = 0 x = 3 x = 4 x = 7 None of these

b. [2 points] On which of the following intervals is g(x) always decreasing?

(-5, -1) (-1, 0) (0, 3) (3, 4) (4, 7) none of these

c. [2 points] At which of the following values does g(x) have a local maximum?

x = -1 x = 0 x = 3 x = 4 None of these

d. [2 points] On which of the following intervals is g(x) always concave down?

- (-5,-1) (-1,0) (0,3) (3,4) (4,7) none of these
- e. [2 points] At which of the following values does g(x) have an inflection point?
 - x = -1 x = 0 x = 3 x = 4 None of these
- **f.** [2 points] Suppose that g(7) = 0 and g''(x) < 0 for all x > 7. Which of the following values of g(10) are possible?

g(10) = -5 g(10) = 2 g(10) = 6 g(10) = 11 none of these

g. [2 points] Use the table to give the best possible estimate of g''(-3).

Answer: $g''(-3) \approx$ _____