10. [4 points] An implicit curve is described by the equation

$$
x y^{n}=\cos (a x)
$$

where a and n are positive constants. Compute $\frac{d y}{d x}$. Your answer may include a and n. You must show every step of your work.

Answer: $\frac{d y}{d x}=$ \qquad
11. [8 points] The differentiable function $f(x)$ is defined for all real numbers. Additionally, $f(x)$ has exactly two critical points, at $x=0$ and $x=5$. A table of values of $f(x)$ is given below.

x	-2	1	3	7
$f(x)$	2	4	9	5

For parts a.-d., circle all correct choices.
a. [2 points] On which of the following interval(s) must $f^{\prime}(x)$ always be negative?
$(-2,0)$
NONE OF THESE
b. [2 points] On which of the following interval(s) must there be a point c for which $f^{\prime}(c)=-1$?

$$
\begin{array}{llll}
(-\infty,-2) & (-2,1) & (1,3) \quad(3,7) \quad \text { NONE OF THESE }
\end{array}
$$

c. [2 points] On the interval $[0,6]$, at which of the following point(s) does $f(x)$ attain its global maximum? If there is not enough information to determine this, circle not enough info.

$$
\begin{array}{llll}
x=0 & x=3 & x=5 & x=6
\end{array} \text { NOT ENOUGH INFO }
$$

d. [2 points] On the interval $[-2,5]$, at which of the following point(s) does $f(x)$ attain its global minimum? If there is not enough information to determine this, circle not enough info.

$$
x=-2 \quad x=0 \quad x=2 \quad x=5 \quad \text { NOT ENOUGH INFO }
$$

