3. [12 points] Suppose $q(x)$ is a differentiable function defined for all real numbers x. The derivative and second derivative of $q(x)$ are given by

$$
q^{\prime}(x)=x^{2 / 3}(x-3)^{5 / 3}(x+5) \quad \text { and } \quad q^{\prime \prime}(x)=\frac{10(x-3)^{2 / 3}(x-1)(x+3)}{3 x^{1 / 3}} .
$$

a. [1 point] Find the x-coordinates of all critical points of $q(x)$. If there are none, write nONE.

Answer: Critical point(s) of $q(x)$ at $x=$ \qquad
b. [2 points] Find the x-coordinates of all critical points of $q^{\prime}(x)$. If there are none, write NONE.

Answer: Critical point(s) of $q^{\prime}(x)$ at $x=$ \qquad
c. [5 points] Find the x-coordinates of all local maxima and local minima of $q(x)$. If there are none of a particular type, write NONE. Use calculus to find and justify your answers, and be sure to show enough evidence to demonstrate that you have found all local extrema.

Answer: Local max(es) at $x=$ \qquad and Local min(s) at $x=$ \qquad
d. [4 points] Find the x-coordinates of all inflection points of $q(x)$. If there are none, write none. Use calculus to find and justify your answers, and be sure to show enough evidence to demonstrate that you have found all inflection points.
\qquad

