4. [13 points]

The function $u(x)$ is defined and invertible on $(-\infty, \infty)$. A portion of its graph is shown to the right.

Note that:

- $u(x) = -2 \sin \left(\frac{\pi}{4} x \right)$ on $[0, 2]$, and
- $u(x)$ is linear on the intervals $(-4, 0)$ and $(2, 5)$.

a. [11 points] Evaluate each of the following quantities exactly, or write DNE if the value does not exist. You do not need to show work, but limited partial credit may be awarded for work shown. Your answers should not contain the letter u, but do not need to be fully simplified.

i. [2 points] Find $(u^{-1})'(-3)$.

Answer: $(u^{-1})'(-3) = \ldots$

ii. [2 points] Let $v(x) = u(-1 - x)$. Find $v'(-1)$.

Answer: $v'(-1) = \ldots$

iii. [3 points] Let $w(x) = \frac{x}{2u(x)}$. Find $w'(-3)$.

Answer: $w'(-3) = \ldots$

iv. [4 points] Let $z(x) = \ln(2x + 1)u(x)$. Find $z'(1)$.

Answer: $z'(1) = \ldots$

b. [2 points] At $x = 7$, the tangent line to $u(x)$ is given by $y = -5 - 2(x - 7)$. Find an equation for the tangent line to $u^{-1}(x)$ at $x = -5$.

Answer: \ldots