7. [11 points]

Shown to the right is the graph of a function $h(x)$.

For parts a.-c., circle all correct choices.

a. [2 points] Which of the following are critical points of $h(x)$?

$$
x=-3 \quad x=-1 \quad x=1 \quad x=2 \quad x=3 \quad \text { NONE OF THESE }
$$

b. [2 points] On which of the following interval(s) does $h(x)$ satisfy the hypotheses of the Mean Value Theorem?

$$
[-4,-1] \quad[-4,0] \quad[0,2] \quad[3,4] \quad \text { NONE OF THESE }
$$

c. [2 points] On which of the following interval(s) does $h(x)$ satisfy the conclusion of the Mean Value Theorem?

$$
[-4,-1] \quad[-4,0] \quad[0,2] \quad[3,4] \quad \text { NONE OF THESE }
$$

d. [5 points] Define the function $k(x)$ such that

$$
k(x)=\left\{\begin{array}{lr}
h(x) & -4 \leq x<1 \\
A^{2} \sin (A x+B) & 1 \leq x \leq 4,
\end{array}\right.
$$

where A and B are constants. Find one pair of values for A and B that make $k(x)$ differentiable at $x=1$. Show your work.

Answer: $A=$ \qquad and $B=$ \qquad

