8. [11 points] Parts a. and b. are unrelated.
a. [6 points] Windchill is the temperature felt on exposed skin due to the combination of air temperature and wind speed. For a certain fixed air temperature, we define the following functions W and T.

- $W(s)$ is the windchill, in degrees Fahrenheit, when the wind speed is s miles per hour (mph).
- $T(r)$ is the time, in minutes, it takes for frostbite to develop on exposed skin when the windchill is r degrees Fahrenheit.

The functions W and T are both invertible and differentiable. Suppose that

- $W(25)=-37$
- $T(-25)=25$
- $T(-37)=10$
- $W^{\prime}(25)=-0.4$
- $T^{\prime}(-25)=2$
- $T^{\prime}(-37)=0.75$
i. [2 points] Write an equation for the linear approximation $L(s)$ of $W(s)$ near $s=25$.

Answer: $\quad L(s)=$ \qquad
ii. [1 points] How many minutes does it take for frostbite to develop if the wind speed is 25 mph?

Answer:

iii. [3 points] If the wind speed is 26 mph , estimate the amount of time, in minutes, it takes for frostbite to develop.

Answer:

b. [5 points] Let $A(t)$ be the temperature, in degrees Fahrenheit $\left({ }^{\circ} \mathrm{F}\right)$, at time t hours after midnight on a certain winter day in Ann Arbor. You are given the following information.

- $A(t)$ is differentiable and has only one critical point on $0<t<12$.
- The coldest temperature that day was $-4^{\circ} \mathrm{F}$, which occurred at 5:00 AM.
- Between midnight and 5:00 AM, the temperature fell at an average rate of $2^{\circ} \mathrm{F}$ per hour.
- The temperature was increasing the fastest at 8:00 AM.
- The global maximum value of $A(t)$ on $0 \leq t \leq 12$ is $12^{\circ} \mathrm{F}$.

On the axes below, sketch a possible graph of $A(t)$ on $0 \leq t \leq 12$.

