8. [11 points] Parts a. and b. are unrelated.
a. [6 points] Windchill is the temperature felt on exposed skin due to the combination of air temperature and wind speed. For a certain fixed air temperature, we define the following functions $W$ and $T$.

- $W(s)$ is the windchill, in degrees Fahrenheit, when the wind speed is $s$ miles per hour (mph).
- $T(r)$ is the time, in minutes, it takes for frostbite to develop on exposed skin when the windchill is $r$ degrees Fahrenheit.

The functions $W$ and $T$ are both invertible and differentiable. Suppose that

- $W(25) = -37$
- $W'(25) = -0.4$
- $T(-25) = 25$
- $T'(-25) = 2$
- $T(-37) = 10$
- $T'(-37) = 0.75$

i. [2 points] Write an equation for the linear approximation $L(s)$ of $W(s)$ near $s = 25$.

**Answer:** $L(s) = \underline{\text{linear approximation}}$

ii. [1 point] How many minutes does it take for frostbite to develop if the wind speed is 25 mph?

**Answer:** \underline{\text{minutes}}

iii. [3 points] If the wind speed is 26 mph, estimate the amount of time, in minutes, it takes for frostbite to develop.

**Answer:** \underline{\text{minutes}}

b. [5 points] Let $A(t)$ be the temperature, in degrees Fahrenheit ($°F$), at time $t$ hours after midnight on a certain winter day in Ann Arbor. You are given the following information.

- $A(t)$ is differentiable and has only one critical point on $0 < t < 12$.
- The coldest temperature that day was $-4°F$, which occurred at 5:00 AM.
- Between midnight and 5:00 AM, the temperature fell at an average rate of $2°F$ per hour.
- The temperature was increasing the fastest at 8:00 AM.
- The global maximum value of $A(t)$ on $0 \leq t \leq 12$ is $12°F$.

On the axes below, sketch a possible graph of $A(t)$ on $0 \leq t \leq 12$.

[Graph of $y = A(t)$ with axes ranging from 0 to 12 on the x-axis and -8 to 16 on the y-axis.]