1. [13 points] Let g be a function such that $g^{\prime \prime}(x)$ is defined for all real numbers. A table of values of $g^{\prime}(x)$, the derivative of $g(x)$, is given below.

x	-5	-1	0	3	4	7
$g^{\prime}(x)$	3	0	-4	-3	0	2

Assume that between each pair of consecutive values of x given in the table, $g^{\prime}(x)$ is either always increasing or always decreasing.

For parts a.-f., circle all correct choices.
a. [1 point] At which of the following values does $g(x)$ have a critical point?

$$
\begin{array}{lllll}
x=-5 & x=-1 & x=0 & x=3 & x=4 \\
x=7 & \text { NONE OF THESE }
\end{array}
$$

b. [2 points] On which of the following intervals is $g(x)$ always decreasing?

$$
\begin{array}{llll}
(-5,-1) & (-1,0) & (0,3) & (3,4) \\
(4,7) & \text { NONE OF THESE }
\end{array}
$$

c. [2 points] At which of the following values does $g(x)$ have a local maximum?

$$
x=-1 \quad x=0 \quad x=3 \quad x=4 \quad \text { NONE OF THESE }
$$

d. [2 points] On which of the following intervals is $g(x)$ always concave down?

$$
\begin{array}{lllll}
(-5,-1) & (-1,0) & (0,3) & (3,4) & (4,7) \quad \text { NONE OF THESE }
\end{array}
$$

e. [2 points] At which of the following values does $g(x)$ have an inflection point?

$$
\begin{array}{lllll}
x=-1 & x=0 & x=3 & x=4 \quad \text { NONE OF THESE }
\end{array}
$$

f. [2 points] Suppose that $g(7)=0$ and $g^{\prime \prime}(x)<0$ for all $x>7$. Which of the following values of $g(10)$ are possible?

$$
g(10)=-5 \quad g(10)=2 \quad g(10)=6 \quad g(10)=11 \quad \text { NONE OF THESE }
$$

g. [2 points] Use the table to give the best possible estimate of $g^{\prime \prime}(-3)$.

Solution: Since -3 is between -5 and -1 , we find the average rate of $g^{\prime}(x)$ on the interval $(-5,-1)$ to estimate the derivative of g^{\prime} at -3 , i.e. $g^{\prime \prime}(-3)$:

$$
\frac{3-0}{-5-(-1)}=\frac{3}{-4}
$$

Answer: $g^{\prime \prime}(-3) \approx \square \frac{-3}{4}$

