2. [9 points]

A scientist conducted an experiment in which she grew a bacterial culture in a petri dish. Let $b(t)$ be the amount of bacteria, as measured by mass in milligrams (mg), contained in the dish t hours into the experiment. A portion of the function $b^{\prime}(t)$, the derivative of $b(t)$, is graphed to the right.

The graph of $b^{\prime}(t)$ passes through the points $(2,3),(3,4),(4,5)$ and $(8,5)$. You may estimate any other values you need in this problem from the given graph.

a. [2 points] Using the graph, complete the following sentence.

Eight hours into the experiment, in the next ten minutes the amount of bacteria in the dish ...

$$
\text { (circle one) INCREASED DECREASED by approximately } \quad 5 / 6 \quad \mathrm{mg} .
$$

Solution: We see that $b^{\prime}(4)=5$. Since ten minutes is $1 / 6$ of an hour, we expect the amount of bacteria to grow by about $5 \cdot 1 / 6 \mathrm{mg}$.
b. [2 points] Four hours into the experiment, there were 32.5 mg of bacteria in the dish. Write a formula for the linear approximation $L(t)$ of $b(t)$ near $t=4$.

Solution: We know that $L(t)=b(4)+b^{\prime}(4)(t-4)$. We are told that $b(4)=32.5$ and see from the graph that $b^{\prime}(4)=5$.

$$
\text { Answer: } \quad L(t)=\frac{32.5+5(t-4)}{}
$$

c. [2 points] Use $L(t)$ from part b. to estimate the amount of bacteria, in mg, in the dish at time $t=4.3$. Is this estimate an overestimate, an underestimate, neither of these, or is there not enough information to decide?

Solution: We plug in 0.3 to the formula from b. From the graph we see that $b^{\prime}(t)$ is increasing near $t=4$, so that $b^{\prime \prime}(t)$ is positive near $t=4$. Thus $b(t)$ is concave up near $t=4$ so this estimate is an underestimate.

Answer: Amount of bacteria at $t=4.3$ is \approx \qquad $32.5+5(0.3)=34$ mg Circle one: OVERESTIMATE UNDERESTIMATE NEITHER NOT ENOUGH INFO
d. [3 points] Three hours into the experiment, there were 28 mg of bacteria in the dish. Write a formula for the quadratic approximation $Q(t)$ of $b(t)$ near $t=3$.

Solution: We know that $Q(t)=b(3)+b^{\prime}(4)(t-3)+\frac{b^{\prime \prime}(3)}{2}(t-3)^{2}$. We are told that $b(3)=28$ and see from the graph that $b^{\prime}(3)=4$. We also find the slope of the given graph to find that $b^{\prime \prime}(3)=1$.

$$
\text { Answer: } \quad Q(t)=\longrightarrow \quad 28+4(t-3)+\frac{1}{2}(t-3)^{2}
$$

