3. [12 points] Suppose $q(x)$ is a differentiable function defined for all real numbers x. The derivative and second derivative of $q(x)$ are given by

$$
q^{\prime}(x)=x^{2 / 3}(x-3)^{5 / 3}(x+5) \quad \text { and } \quad q^{\prime \prime}(x)=\frac{10(x-3)^{2 / 3}(x-1)(x+3)}{3 x^{1 / 3}} .
$$

a. [1 point] Find the x-coordinates of all critical points of $q(x)$. If there are none, write NONE.

Answer: Critical point(s) of $q(x)$ at $x=\quad x=0,3$, and -5
b. [2 points] Find the x-coordinates of all critical points of $q^{\prime}(x)$. If there are none, write none.

Answer: Critical point(s) of $q^{\prime}(x)$ at $x=\ldots x=-3,0,1$, and 3
c. [5 points] Find the x-coordinates of all local maxima and local minima of $q(x)$. If there are none of a particular type, write NONE. Use calculus to find and justify your answers, and be sure to show enough evidence to demonstrate that you have found all local extrema.

Solution: The sign of $q^{\prime}(x)$ can only possibly change at the three critical points of $q(x)$, namely 0 , 3 , and -5 . Below is a number line showing these signs, with accompanying sign logic in order to justify how we know when $q^{\prime}(x)$ is positive and when it is negative.
(Note that $a^{2 / 3}=\left(a^{2}\right)^{1 / 3}$, which is positive for any nonzero number a and that the sign of $a^{5 / 3}$ is the same as the sign of a.)

$$
q^{q^{\prime}(x)} \underset{-\infty}{ } \begin{array}{ccccccc}
(-)^{2 / 3}(-)^{5 / 3}(-) & \underbrace{(-)^{2 / 3}(-)^{5 / 3}(+)} & (+)^{2 / 3}(-)^{5 / 3}(+) & & (+)^{2 / 3}(+)^{5 / 3}(+) \\
\hline & (+) & -5 & (-) & 0 & (-) & 3
\end{array}
$$

By the First Derivative Test, $q(z)$ has a local maximum at $x=-5$ and a local minimum at $x=3$.
Note: The Second Derivative Test can be used to show that $q(x)$ has a local maximum at $x=-5$ but cannot be used to determine the bahavior of $q(x)$ at $x=0$ or $x=3$.

Answer: Local max(es) at $x=\left[\begin{array}{l}-5\end{array}\right.$ and \quad Local min(s) at $x=\underline{3}$
d. [4 points] Find the x-coordinates of all inflection points of $q(x)$. If there are none, write none. Use calculus to find and justify your answers, and be sure to show enough evidence to demonstrate that you have found all inflection points.

Solution: The concavity of $q(x)$ can only possibly change at $x=-3,0,1$ and 3 . Below is a number line showing the signs of $q^{\prime \prime}(x)$, which shows when the sign of $q^{\prime \prime}(x)$ actually changes, with accompanying sign logic in order to justify how we know when $q^{\prime \prime}(x)$ is positive and when it is negative.

$$
\begin{array}{lllllllll}
q^{\prime \prime}(x) \\
& \frac{(-)^{2 / 3}(-)(-)}{(-)^{1 / 3}} & \frac{(-)^{2 / 3}(-)(+)}{(-)^{1 / 3}} & \frac{(-)^{2 / 3}(-)(+)}{(+)^{1 / 3}} & \frac{(-)^{2 / 3}(+)(+)}{(+)^{1 / 3}} & \frac{(+)^{2 / 3}(+)(+)}{(+)^{1 / 3}} \\
-\infty & (-) & -3 & (+) & 0 & (-) & 1 & (+) & 3
\end{array}
$$

The sign of $q^{\prime \prime}(x)$ (and hence the concavity of $\left.q(x)\right)$ changes at $x=-3,0$, and 1 .

Answer: Inflection point(s) at $x=$ \qquad

