5. [7 points] An alien is building the wire frames of two pyramids. One has a base that is an equilateral triangle with side length x meters, and the other has a base that is a square with side length r meters. These shapes are shown below. For both, all triangular faces are equilateral.

Triangular Pyramid

Square Pyramid

The alien has 2 meters of wire available to build the frames, and will use all of it.
a. [2 points] Find a formula for r in terms of x.

Solution: There are 6 sides of length x meters, and 8 sides of length r meters. In total, these lengths must add up to 2 meters, so $6 x+8 r=2$. We can then solve for r in terms of x and find that $r=\frac{2-6 x}{8}$.

b. [3 points] Find a formula for $A(x)$, the combined surface area of the two pyramids (i.e. the total area of all sides and bases of both shapes). Your formula should be in terms of x only.
Recall that the area of an equilateral triangle with side length L is $\frac{\sqrt{3}}{4} L^{2}$.
Solution: On the triangular pyramid, there are 4 equilateral triangles each with side length x. On the square pyramid, there are 4 equilateral triangles each with side length r, plus one square of side length r on the base. Adding up the areas of these shapes, we find

Total Surface Area $=4\left(\frac{\sqrt{3}}{4} x^{2}\right)+4\left(\frac{\sqrt{3}}{4} r^{2}\right)+r^{2}=\sqrt{3} x^{2}+\sqrt{3} r^{2}+r^{2}=\sqrt{3} x^{2}+(\sqrt{3}+1) r^{2}$.
We substitute $r=\frac{2-6 x}{8}$ and find $A(x)=\sqrt{3} x^{2}+(\sqrt{3}+1)\left(\frac{2-6 x}{8}\right)^{2}$
$\sqrt{3} x^{2}+(\sqrt{3}+1)\left(\frac{2-6 x}{8}\right)^{2}$
Answer: $\quad A(x)=$ \qquad
c. [2 points] The alien wants to actually build one of each type of pyramid. In the context of the problem, what is the domain of the function $A(x)$ from part b.? You may give your answer as an interval or using inequalities.
Solution: We must have $x>0$ in order to get a triangular pyramid. We also need $r>0$ to get a square pyramid, which in terms of x means

$$
\frac{2-6 x}{8}>0 \text { which simplifies to } 2>6 x, \text { so } \frac{1}{3}>x
$$

Answer:

