7. [11 points]

Shown to the right is the graph of a function h(x).

For parts **a.-c.**, circle <u>all</u> correct choices.

a. [2 points] Which of the following are critical points of h(x)?

$$x = -3$$
 $x = -1$ $x = 1$ $x = 2$ $x = 3$ NONE OF THESE

b. [2 points] On which of the following interval(s) does h(x) satisfy the hypotheses of the Mean Value Theorem?

$$[-4,-1]$$
 $[-4,0]$ $[0,2]$ $[3,4]$ None of these

c. [2 points] On which of the following interval(s) does h(x) satisfy the conclusion of the Mean Value Theorem?

$$[-4, -1]$$
 $[-4, 0]$ $[0, 2]$ $[3, 4]$ None of these

d. [5 points] Define the function k(x) such that

$$k(x) = \begin{cases} h(x) & -4 \le x < 1\\ A^2 \sin(Ax + B) & 1 \le x \le 4, \end{cases}$$

where A and B are constants. Find one pair of values for A and B that make k(x) differentiable at x = 1. Show your work.

Solution: For k to be differentiable, it must be continuous. At x = 1, continuity implies that

$$0 = A^2 \sin(A+B)$$
, so $A = 0$ or $\sin(A+B) = 0$.

We also need the slope of each piece to match at x = 1, that is,

$$h'(1) = A^2 (\cos(A+B) \cdot A)$$
, so $2 = A^3 \cos(A+B)$.

Notice that we can rule out the possibility that A = 0 (since $2 \neq 0$), which forces us to choose $\sin(A+B) = 0$. The problem only asks for *one* pair of values, and *one* way to get $\sin(A+B) = 0$ is to set A + B = 0 so A = -B. This means

$$2 = A^3 \cos(0) = A^3$$
, which we can solve to find $A = \sqrt[3]{2}$ and $B = -A = -\sqrt[3]{2}$.

<u>Note</u>: There are other possible values. We could have also chosen $A + B = n\pi$ where n is any integer. If n is even, this gives $(A, B) = (\sqrt[3]{2}, n\pi - \sqrt[3]{2})$. If n is odd, this gives $(A, B) = (-\sqrt[3]{2}, n\pi + \sqrt[3]{2})$.