7. [11 points]

Shown to the right is the graph of a function $h(x)$.

For parts a.-c., circle all correct choices.

a. [2 points] Which of the following are critical points of $h(x)$?

$$
\begin{array}{lllll}
x=-3 & x=1 & x=2 & x=3 & x=-1
\end{array}
$$

b. [2 points] On which of the following interval(s) does $h(x)$ satisfy the hypotheses of the Mean Value Theorem?
$[-4,-1]$
$[-4,0]$
$[0,2]$
$[3,4]$
NONE OF THESE
c. [2 points] On which of the following interval(s) does $h(x)$ satisfy the conclusion of the Mean Value Theorem?
$[-4,-1]$
$[-4,0]$
$[0,2]$
$[3,4]$
NONE OF THESE
d. [5 points] Define the function $k(x)$ such that

$$
k(x)=\left\{\begin{array}{lr}
h(x) & -4 \leq x<1 \\
A^{2} \sin (A x+B) & 1 \leq x \leq 4
\end{array}\right.
$$

where A and B are constants. Find one pair of values for A and B that make $k(x)$ differentiable at $x=1$. Show your work.

Solution: For k to be differentiable, it must be continuous. At $x=1$, continuity implies that

$$
0=A^{2} \sin (A+B), \quad \text { so } \quad A=0 \text { or } \sin (A+B)=0
$$

We also need the slope of each piece to match at $x=1$, that is,

$$
h^{\prime}(1)=A^{2}(\cos (A+B) \cdot A), \quad \text { so } \quad 2=A^{3} \cos (A+B)
$$

Notice that we can rule out the possibility that $A=0$ (since $2 \neq 0$), which forces us to choose $\sin (A+B)=0$. The problem only asks for one pair of values, and one way to get $\sin (A+B)=0$ is to set $A+B=0$ so $A=-B$. This means

$$
2=A^{3} \cos (0)=A^{3}, \quad \text { which we can solve to find } \quad A=\sqrt[3]{2} \quad \text { and } B=-A=-\sqrt[3]{2}
$$

Note: There are other possible values. We could have also chosen $A+B=n \pi$ where n is any integer. If n is even, this gives $(A, B)=(\sqrt[3]{2}, n \pi-\sqrt[3]{2})$. If n is odd, this gives $(A, B)=(-\sqrt[3]{2}, n \pi+\sqrt[3]{2})$.

$$
\text { Answer: } \quad A=\quad \sqrt[3]{2} \quad \text { and } B=\ldots \quad-\sqrt[3]{2}
$$

