9. [6 points]

The implicit curve \mathcal{C} is given by the equation

$$
y^{2}-1=r^{2}+x^{2}(y-r)
$$

for some constant r. A graph of the curve with $r=1$ is shown to the right. Note that

$$
\frac{d y}{d x}=\frac{2 x(y-r)}{2 y-x^{2}} .
$$

Answer each of the following questions about the implicit curve \mathcal{C}. Your answers must be in exact form.

a. [2 points] When $r=1$, the curve \mathcal{C} passes through the point $(\sqrt{2}, 0)$. Write a formula for the tangent line to the curve \mathcal{C} at this point.

Solution: The slope at $(\sqrt{2}, 0)$ when $r=1$ is

$$
\frac{2 \sqrt{2}(0-1)}{2(0)-(\sqrt{2})^{2}}=\frac{2 \sqrt{2}}{2}=\sqrt{2} .
$$

Answer:

$$
y=\sqrt{2}(x-\sqrt{2})
$$

b. [4 points] In this part, we do not assume anything about r. In particular, do not assume $r=1$. Find the (x, y) coordinates of all points at which the tangent line to the curve \mathcal{C} is horizontal. If there are no such points, write none. Your answer may be in terms of the constant r. You must show every step of your work.

Solution: For the tangent line to \mathcal{C} at (x, y) to be horizontal, we need the numerator of $d y / d x$ to equal zero:

$$
2 x(y-r)=0, \quad \text { meaning } \quad x=0 \quad \text { or } \quad y=r
$$

If there was a point on the curve with $y=r$, then we would have the equation

$$
\begin{aligned}
r^{2}-1 & =r^{2}+x^{2}(r-r) \\
r^{2}-1 & =r^{2} \\
-1 & =0
\end{aligned}
$$

so there are no points with $y=r$. To find points with $x=0$, we solve

$$
\begin{aligned}
y^{2}-1 & =r^{2}+(0)^{2}(y-r) \\
y^{2} & =r^{2}+1 \\
y & = \pm \sqrt{r^{2}+1}
\end{aligned}
$$

Answer: $\quad\left(0, \sqrt{r^{2}+1}\right)$ and $\left(0,-\sqrt{r^{2}+1}\right)$

