6. [14 points] A table of values for a differentiable function $g(x)$ and its derivative $g^{\prime}(x)$ are shown below to the left. Below to the right is shown a portion of the graph of $h^{\prime}(x)$, the derivative of a function $h(x)$. The function $h(x)$ is defined and continuous for all real numbers.

x	-1	0	1	3	4
$g(x)$	0	2	5	1	-7
$g^{\prime}(x)$	4	3	-1	-6	-3

Answer parts a.-b., or write NONE if appropriate. You do not need to show work.
a. [2 points] List the x-coordinates of all critical points of $h(x)$ on the interval $(-4,4)$.
b. [2 points] List the x-coordinates of all local maxima of $h(x)$ on the interval $(-4,4)$.

Find the exact values for parts c.-e., or NeI if there is not enough information to do so. Write DNE if the value does not exist. Your answers should not include the letters g or h but you do not need to simplify. Show work.
c. $\left[2\right.$ points] Let $A(x)=\frac{\sin (x)+3}{g(x)}$. Find $A^{\prime}(0)$.
d. [2 points] Let $f(x)=g\left(h^{\prime}(x)\right)$. Find $f^{\prime}(4)$.
e. [2 points] Let $P(x)=x e^{g(x)}$. Find $P^{\prime}(-1)$.

Answer parts f.-g. You do not need to show work.
f. [2 points] Complete the following sentence.

Because the function $g(x)$ satisfies the hypotheses of the mean value theorem on the interval $[-1,4]$, there must be some point c with $-1 \leq c \leq 4$ such that...
g. [2 points] On which of the following intervals does $h^{\prime}(x)$ satisfy the hypotheses of the mean value theorem? List all correct answers, or write NONE.

$$
\begin{equation*}
[-2,0] \quad[-1,1] \tag{3,4}
\end{equation*}
$$

7. [5 points] An implicit function is described by the equation

$$
\cos (x y)=7 x^{2}+y
$$

Find a formula for $\frac{d y}{d x}$ in terms of y and x. You must show every step of your work.

