6. [14 points] A table of values for a differentiable function g(x) and its derivative g'(x) are shown below to the left. Below to the right is shown a portion of the graph of h'(x), the <u>derivative</u> of a function h(x). The function h(x) is defined and continuous for all real numbers.

x	-1	0	1	3	4
g(x)	0	2	5	1	-7
g'(x)	4	3	-1	-6	-3

Answer parts a.-b., or write NONE if appropriate. You do not need to show work.

- **a.** [2 points] List the x-coordinates of all critical points of h(x) on the interval (-4,4).
- **b.** [2 points] List the x-coordinates of all local maxima of h(x) on the interval (-4,4).

Find the **exact** values for parts $\mathbf{c}.-\mathbf{e}.$, or NEI if there is not enough information to do so. Write DNE if the value does not exist. Your answers should not include the letters g or h but you do not need to simplify. Show work.

- c. [2 points] Let $A(x) = \frac{\sin(x) + 3}{g(x)}$. Find A'(0).
- **d**. [2 points] Let f(x) = g(h'(x)). Find f'(4).
- e. [2 points] Let $P(x) = xe^{g(x)}$. Find P'(-1).

Answer parts \mathbf{f} .— \mathbf{g} . You do not need to show work.

f. [2 points] Complete the following sentence.

Because the function g(x) satisfies the hypotheses of the mean value theorem on the interval [-1,4], there must be some point c with $-1 \le c \le 4$ such that...

g. [2 points] On which of the following intervals does h'(x) satisfy the hypotheses of the mean value theorem? List all correct answers, or write NONE.

$$[-2,0]$$
 $[-1,1]$ $[3,4]$

7. [5 points] An implicit function is described by the equation

$$\cos(xy) = 7x^2 + y.$$

Find a formula for $\frac{dy}{dx}$ in terms of y and x. You must show every step of your work.