12. [10 points] Again suppose that $C=h(T)$ is the daily cost, in dollars, to heat a certain house if the average outside temperature that day is T degrees Fahrenheit $\left({ }^{\circ} \mathrm{F}\right)$. Some values of $h(T)$ and its derivative $h^{\prime}(T)$ are given in the table below.

T	5	8	18	30	55
$h(T)$	8	7.2	5	3.3	1.4
$h^{\prime}(T)$	-0.3	-0.25	-0.2	-0.11	-0.05

The function $h(T)$ is invertible and differentiable. Also, $h^{\prime \prime}(T)$ exists and is positive for all T.
a. [2 points] Find the linear approximation $L(T)$ of $h(T)$ near $T=8$.

Solution: $\quad L(T)=7.2-0.25(T-8)$
b. [1 point] Use your formula for $L(T)$ to approximate $h(10)$.

Solution: $\quad h(10) \approx 7.2-0.25 \cdot 2=6.7$
c. [2 points] Is your answer in part b. an overestimate or underestimate of the actual value, or is there not enough information to decide? Briefly explain.

Solution: The approximation is an underestimate since $h^{\prime \prime}(T)$ is positive, so $h(T)$ is concave up.
d. [3 points] Suppose that the quadratic approximation $Q(T)$ of $h(T)$ near $T=25$ is given by

$$
Q(T)=3.9-0.15(T-25)+0.003(T-25)^{2}
$$

Find the values of $h(25), h^{\prime}(25)$, and $h^{\prime \prime}(25)$.

Solution:

$h(25)=3.9$
$h^{\prime}(25)=-0.15$
$h^{\prime \prime}(25)=0.003 * 2=0.006$
e. [2 points] Use the table to compute $\left(h^{-1}\right)^{\prime}(5)$.

Solution: $\quad\left(h^{-1}\right)^{\prime}(5)=\frac{1}{h^{\prime}(18)}=-5$

