3. [6 points] The function $g(x)$ is given by the equation

$$
g(x)= \begin{cases}a x^{2} & x \leq 1 \\ b-\ln (3 x) & x>1\end{cases}
$$

where a and b are constants. Find one pair of exact values for a and b such that $g(x)$ is differentiable, or write none if there are none. Be sure your work is clear.

Solution:

Continuity at $x=1$ requires:

$$
\begin{aligned}
a\left(1^{2}\right) & =b-\ln (3 \cdot 1) \\
a & =b-\ln (3) .
\end{aligned}
$$

So $b=a+\ln (3)$.
Note that $\quad \frac{d}{d x}\left(a x^{2}\right)=2 a x \quad$ and $\quad \frac{d}{d x}(b-\ln (3 x))=-\frac{1}{x}$
So differentiability at $x=1$ also requires:

$$
\begin{aligned}
2 a(1) & =-\frac{1}{1} \\
2 a & =-1 \\
a & =-\frac{1}{2} .
\end{aligned}
$$

Therefore, $a=-\frac{1}{2} \quad$ and $\quad b=-\frac{1}{2}+\ln 3$.

