5. [10 points] An architect is building a model out of wire and paper.

- The lower part is a box of length $2 x$ centimeters (cm), depth $x \mathrm{~cm}$, and height $x \mathrm{~cm}$.
- The top part is a cube of side length $y \mathrm{~cm}$.
- The top part is attached to the lower part at the center of the top of the lower part.
- The architect requires that $0 \leq y \leq x$.
- Paper will cover the outside of the model: there is paper on the sides of the upper and lower parts, including the bottom, but no paper where the upper and lower parts meet.

The architect will use exactly $160 \mathrm{~cm}^{2}$ of paper to make the model.
a. [4 points] Write a formula for y in terms of x.

Solution: The surface area of the lower part is $4 \cdot 2 x^{2}+2 \cdot x^{2}=10 x^{2}$, but we should subtract y^{2} to account for the hole in the top face. The surface area of the sides and top (but without the bottom) of the top part is $5 y^{2}$. So the total amount of paper needed is $10 x^{2}-y^{2}+5 y^{2}=10 x^{2}+4 y^{2}=160$. So $y=\sqrt{40-\frac{10}{4} x^{2}}$.
b. [2 points] Write a formula for the function $V(x)$ which gives the total volume of the model in terms of x only.

Solution: The total volume is $2 x^{3}+y^{3}=2 x^{3}+\left(\sqrt{40-\frac{10}{4} x^{2}}\right)^{3}$.
c. [4 points] In the context of this problem, what is the domain of $V(x)$?

Solution:

The value of x would be largest when $y=0$, in which case $10 x^{2}+4(0)^{2}=160$, so that $x=4$.
The smallest x can be is y, so that $10 x^{2}+4 x^{2}=160$ and $x=\sqrt{160 / 14}$.
So the domain is $\sqrt{\frac{160}{14}} \leq x \leq 4$.

