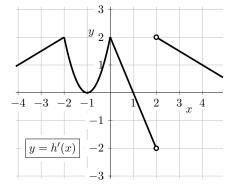
6. [14 points] A table of values for a differentiable function g(x) and its derivative g'(x) are shown below to the left. Below to the right is shown a portion of the graph of h'(x), the <u>derivative</u> of a function h(x). The function h(x) is defined and continuous for all real numbers.

x	-1	0	1	3	4
g(x)	0	2	5	1	-7
g'(x)	4	3	-1	-6	-3



Answer parts a.-b., or write NONE if appropriate. You do not need to show work.

a. [2 points] List the x-coordinates of all critical points of h(x) on the interval (-4,4).

Solution: x = -1, 1, 2

b. [2 points] List the x-coordinates of all local maxima of h(x) on the interval (-4,4).

Solution: x = 1

Find the **exact** values for parts $\mathbf{c} \cdot -\mathbf{e} \cdot$, or NEI if there is not enough information to do so. Write DNE if the value does not exist. Your answers should not include the letters g or h but you do not need to simplify. Show work.

c. [2 points] Let $A(x) = \frac{\sin(x) + 3}{g(x)}$. Find A'(0).

Solution: $A'(x) = \frac{g(x)\cos(x) - (\sin(x) + 3)g'(x)}{g(x)^2}$, so $A'(0) = \frac{2 \cdot 1 - (0 + 3) \cdot 3}{2^2} = -\frac{7}{4}$.

d. [2 points] Let f(x) = g(h'(x)). Find f'(4).

Solution: f'(x) = h''(x)g'(h'(x)), so $f'(4) = -\frac{1}{2} \cdot g'(1) = \frac{1}{2}$.

e. [2 points] Let $P(x) = xe^{g(x)}$. Find P'(-1).

Solution: $P'(x) = e^{g(x)} + xg'(x)e^{g(x)}$, so $P'(-1) = e^0 + (-1)(4)e^0 = -3$.

Answer parts **f.**–**g.** You do not need to show work.

f. [2 points] Complete the following sentence.

Because the function g(x) satisfies the hypotheses of the mean value theorem on the interval [-1,4], there must be some point c with $-1 \le c \le 4$ such that...

Solution: $g'(c) = -\frac{7}{5}$.

g. [2 points] On which of the following intervals does h'(x) satisfy the hypotheses of the mean value theorem? List all correct answers, or write NONE.

[-2,0] [-1,1] [3,4]

Solution: [-2,0] and [3,4]