7. [5 points] An implicit function is described by the equation

$$
\cos (x y)=7 x^{2}+y .
$$

Find a formula for $\frac{d y}{d x}$ in terms of y and x. You must show every step of your work.
Solution:

$$
\begin{gathered}
-\sin (x y)\left(y+x \frac{d y}{d x}\right)=14 x+\frac{d y}{d x} \\
-x \sin (x y) \frac{d y}{d x}-\frac{d y}{d x}=14 x+y \sin (x y) \\
-\frac{d y}{d x}(x \sin (x y)+1)=14 x+y \sin (x y) \\
\frac{d y}{d x}=-\frac{14 x+y \sin (x y)}{x \sin (x y)+1}
\end{gathered}
$$

