

Note that $\frac{dy}{dx} = \frac{3x^2 - 3}{2y}$. You must show all of your work in this problem.

a. [2 points] Find the coordinates of the point P.

Solution: $y^2 + 3(0) = 0^3 + 3$, so $(0, -\sqrt{3})$

b. [3 points] The point (-2, 1) is on the curve C. Find the equation of the tangent line to the curve C at this point.

Solution: Since the slope at this point is $\frac{dy}{dx} = \frac{3(-2)^2 - 3}{2(1)} = \frac{9}{2}$, the tangent line is $y = 1 + \frac{9}{2}(x+2)$.

c. [4 points] Find all points on the curve C where the tangent line is horizontal. Give your answer as a list of ordered pairs. Write NONE if there are no such points.

Solution: To find where the tangent line is horizontal, set $3x^2 - 3 = 0$ to find $x = \pm 1$.

When x = 1, we find $y^2 + 3(1) = (1)^3 + 3$, or $y^2 = 1$, so $y = \pm 1$. This leads to the points (1, 1) and (1, -1).

When x = -1, we find $y^2 + 3(-1) = (-1)^3 + 3$, or $y^2 = 5$, so $y = \pm \sqrt{5}$. This leads to the points $(-1, \sqrt{5})$, and $(-1, -\sqrt{5})$.