9. [9 points] Let \mathcal{C} be the curve given by the equation $y^{2}+3 x=x^{3}+3$. The graph of \mathcal{C} is shown below.

Note that $\frac{d y}{d x}=\frac{3 x^{2}-3}{2 y}$. You must show all of your work in this problem.
a. [2 points] Find the coordinates of the point P.

Solution: $y^{2}+3(0)=0^{3}+3$, so $(0,-\sqrt{3})$
b. [3 points] The point $(-2,1)$ is on the curve \mathcal{C}. Find the equation of the tangent line to the curve \mathcal{C} at this point.

Solution: Since the slope at this point is $\frac{d y}{d x}=\frac{3(-2)^{2}-3}{2(1)}=\frac{9}{2}$, the tangent line is $y=1+\frac{9}{2}(x+2)$.
c. [4 points] Find all points on the curve \mathcal{C} where the tangent line is horizontal. Give your answer as a list of ordered pairs. Write none if there are no such points.

Solution: To find where the tangent line is horizontal, set $3 x^{2}-3=0$ to find $x= \pm 1$.
When $x=1$, we find $y^{2}+3(1)=(1)^{3}+3$, or $y^{2}=1$, so $y= \pm 1$.
This leads to the points $(1,1)$ and $(1,-1)$.
When $x=-1$, we find $y^{2}+3(-1)=(-1)^{3}+3$, or $y^{2}=5$, so $y= \pm \sqrt{5}$.
This leads to the points $(-1, \sqrt{5})$, and $(-1,-\sqrt{5})$.

