9. [12 points] Let $q(x)$ be a continuous function which is defined for all real numbers. A portion of the graph of $q^{\prime}(x)$, the derivative of $\boldsymbol{q}(\boldsymbol{x})$, is shown below.

For each of the following, circle all correct choices.
a. [2 points] On which of the following interval(s) is $q(x)$ increasing?
$(0,2)$
NONE OF THESE
b. [2 points] Which of the following are critical point(s) of $q(x)$?

$$
\begin{array}{llll}
x=4 & x=5 & x=7 & \text { NONE OF THESE }
\end{array}
$$

c. [2 points] At which of the following value(s) of x does $q(x)$ have a local maximum?

$$
\begin{array}{llll}
x=4 & x=5 & x=7 & \text { NONE OF THESE }
\end{array}
$$

d. [2 points] On which of the following interval(s) is $q^{\prime \prime}(x)$ positive?

$$
\begin{equation*}
(0,2) \tag{2,4}
\end{equation*}
$$

NONE OF THESE
e. [2 points] At which of the following value(s) of x does $q(x)$ have an inflection point?

$$
x=2 \quad x=7 \quad x=9 \quad \text { NONE OF THESE }
$$

f. [2 points] At which of the following value(s) of x does $q^{\prime}(x)$ have an inflection point?

$$
x=2 \quad x=7 \quad x=9 \quad \text { NONE OF THESE }
$$

