3. [15 points] Let the differentiable function $h(t)$ represent the height in inches (in) of a toy airplane above the ground at time t seconds (sec). Below is a table of some values for $h(t)$ and $h^{\prime}(t)$. Assume that $h(t)$ is invertible, and that $h^{\prime}(t)$ is differentiable for $t>0$.

t	0	2	4	6	8
$h(t)$	28	19	11	8	4
$h^{\prime}(t)$	-5	-4	-2	-1.5	-0.5

For parts a.-d., you do not need to show work, but partial credit can be earned from work shown. You do not need to simplify numerical answers.
a. [3 points] Approximate $h^{\prime \prime}(8)$. Include units.

Solution:

$$
h^{\prime \prime}(8) \approx \frac{h^{\prime}(8)-h^{\prime}(6)}{8-6}=\frac{-0.5-(-1.5)}{2}=\frac{1}{2} .
$$

Answer: \qquad
b. [3 points] Find a formula for the linear approximation $L(t)$ to the function $h(t)$ at $t=2$.

Solution: $L(t)=h(2)+h^{\prime}(2)(t-2)=19-4(t-2)=-4 t+27$
Answer: $\quad L(t)=\frac{19-4(t-2)=-4 t+27}{}$
c. [2 points] Use your answer from the previous part to approximate $h(1.9)$. Include units.

$$
\text { Solution: } \quad h(1.9) \approx L(1.9)=19-4(1.9-2)=19-4(-0.1)=19.4
$$

Answer: \qquad
19.4 inches
d. [2 points] Compute the exact value of $\left(h^{-1}\right)^{\prime}(8)$. (You do not need to include units.)

$$
\text { Solution: } \quad\left(h^{-1}\right)^{\prime}(8)=\frac{1}{h^{\prime}\left(h^{-1}(8)\right)}=\frac{1}{h^{\prime}(6)}=\frac{1}{-1.5} .
$$

Answer: $\quad \frac{1}{-1.5}=-\frac{2}{3}$
e. [3 points] Suppose that $\left(h^{-1}\right)^{\prime}(3)=-9$. Complete the following sentence to give a practical interpretation of this equation.

When the toy airplane is at a height of 3 inches, to descend an additional 0.1 inches ...
Solution: ... will take about 0.9 seconds.
f. [2 points] Note that $h(t)$ satisfies the hypotheses of the Mean Value Theorem on [0, 8]. Complete the following sentence about what the conclusion of this theorem implies is true.

At some time between $t=0$ and $t=8$, the height of the toy airplane is \ldots
(circle one) INCREASING DECREASING at a rate of $\mathbf{3} \mathrm{in} / \mathrm{sec}$.

