3. [15 points] Let the differentiable function h(t) represent the height in inches (in) of a toy airplane above the ground at time t seconds (sec). Below is a table of some values for h(t) and h'(t). Assume that h(t) is invertible, and that h'(t) is differentiable for t > 0.

t	0	2	4	6	8
h(t)	28	19	11	8	4
h'(t)	-5	-4	-2	-1.5	-0.5

For parts a.-d., you do not need to show work, but partial credit can be earned from work shown. You do not need to simplify numerical answers.

a. [3 points] Approximate h''(8). Include units.

Solution:

$$h''(8) \approx \frac{h'(8) - h'(6)}{8 - 6} = \frac{-0.5 - (-1.5)}{2} = \frac{1}{2}.$$

Answer: 0.5 in/sec^2

b. [3 points] Find a formula for the linear approximation L(t) to the function h(t) at t=2.

Solution:
$$L(t) = h(2) + h'(2)(t-2) = 19 - 4(t-2) = -4t + 27$$

Answer: $L(t) = \underline{19 - 4(t-2) = -4t + 27}$

c. [2 points] Use your answer from the previous part to approximate h(1.9). Include units.

Solution: $h(1.9) \approx L(1.9) = 19 - 4(1.9 - 2) = 19 - 4(-0.1) = 19.4$

Answer:

19.4 inches

d. [2 points] Compute the **exact** value of $(h^{-1})'(8)$. (You do not need to include units.)

Solution:
$$(h^{-1})'(8) = \frac{1}{h'(h^{-1}(8))} = \frac{1}{h'(6)} = \frac{1}{-1.5}.$$

Answer:

e. [3 points] Suppose that $(h^{-1})'(3) = -9$. Complete the following sentence to give a practical interpretation of this equation.

When the toy airplane is at a height of 3 inches, to descend an additional 0.1 inches . . .

Solution: ... will take about 0.9 seconds.

f. [2 points] Note that h(t) satisfies the hypotheses of the Mean Value Theorem on [0, 8]. Complete the following sentence about what the conclusion of this theorem implies is true.

At some time between t = 0 and t = 8, the height of the toy airplane is ...

(circle one)

INCREASING

DECREASING

at a rate of _____3

in/sec.