7. [6 points] Define the piecewise function \(g(x) \) as below, where \(a \) and \(b \) are constants.

\[
g(x) = \begin{cases}
 a + b \sin(\pi(x + 2)) & x \leq -2 \\
 -3(x + 2) + 4 & x > -2
\end{cases}
\]

Find one pair of **exact** values for \(a \) and \(b \) such that \(g(x) \) is differentiable, or write NONE if there are none. You do not need to simplify your answers but be sure your work is clear.

Solution: First, we need \(g(x) \) to be continuous at \(x = -2 \).

\[
g(-2) = \lim_{x \to -2^-} g(x) = \lim_{x \to -2^-} a + b \sin(\pi(x + 2)) = a + b \sin(\pi(-2 + 2)) = a + b \sin(0) = a.
\]

\[
\lim_{x \to -2^+} g(x) = \lim_{x \to -2^+} -3(x + 2) + 4 = -3(-2 + 2) + 4 = 4.
\]

So in order for \(g(x) \) to be continuous at \(x = -2 \), we must have \(a = 4 \) (and in that case, \(g(x) \) is indeed continuous at \(x = -2 \)).

For differentiability, we also need the slope on each side of the point at \(x = -2 \) to match up so that there is not a sharp corner. We have

\[
g'(x) = \begin{cases}
 \pi \cdot b \cos(\pi(x + 2)) & x < -2 \\
 -3 & x > -2
\end{cases}
\]

Plugging in \(x = -2 \) to the first piece gives \(\pi \cdot b \cos(\pi(-2 + 2)) = \pi \cdot b \cos(0) = \pi \cdot b \). So differentiability requires \(\pi \cdot b = -3 \) and therefore \(b = -3/\pi \).

Answer: \(a = \underline{4} \) and \(b = -3/\pi \).