7. [6 points] Define the piecewise function $g(x)$ as below, where a and b are constants.

$$
g(x)= \begin{cases}a+b \sin (\pi(x+2)) & x \leq-2 \\ -3(x+2)+4 & x>-2\end{cases}
$$

Find one pair of exact values for a and b such that $g(x)$ is differentiable, or write NONE if there are none. You do not need to simplify your answers but be sure your work is clear.
Solution: First, we need $g(x)$ to be continuous at $x=-2$.

$$
\begin{gathered}
g(-2)=\lim _{x \rightarrow-2^{-}} g(x)=\lim _{x \rightarrow-2^{-}} a+b \sin (\pi(x+2))=a+b \sin (\pi(-2+2))=a+b \sin (0)=a \\
\lim _{x \rightarrow-2^{+}} g(x)=\lim _{x \rightarrow-2^{+}}-3(x+2)+4=-3(-2+2)+4=4
\end{gathered}
$$

So in order for $g(x)$ to be continuous at $x=-2$, we must have $a=4$ (and in that case, $g(x)$ is indeed continuous at $x=-2$).

For differentiability, we also need the slope on each side of the point at $x=-2$ to match up so that there is not a sharp corner. We have

$$
g^{\prime}(x)= \begin{cases}\pi \cdot b \cos (\pi(x+2)) & x<-2 \\ -3 & x>-2\end{cases}
$$

Plugging in $x=-2$ to the first piece gives $\pi \cdot b \cos (\pi(-2+2))=\pi \cdot b \cos (0)=\pi \cdot b$. So differentiability requires $\pi \cdot b=-3$ and therefore $b=-3 / \pi$.

Answer: $a=\ldots$ and $\quad b=\frac{-3 / \pi}{}$

