8. [8 points]
 a. [5 points] Consider the curve C defined by the equation $\ln(x^2) + y = e^{4y}$.
 For this curve C, find a formula for $\frac{dy}{dx}$ in terms of x and y. Clearly show every step of your work.
 Solution:

 \[
 \frac{d}{dx} \left(\ln(x^2) + y \right) = \frac{d}{dx} \left(e^{4y} \right)
 \]

 \[
 \frac{2x}{x^2} + \frac{dy}{dx} = 4e^{4y} \frac{dy}{dx}
 \]

 \[
 \frac{2}{x} = 4e^{4y} \frac{dy}{dx} - \frac{dy}{dx}
 \]

 \[
 \frac{2}{x} = \frac{dy}{dx} (4e^{4y} - 1)
 \]

 \[
 \frac{2}{x(4e^{4y} - 1)} = \frac{dy}{dx}
 \]

 b. [3 points] Let D be a different explicitly defined curve. The curve D passes through the point $(2, 1)$ and satisfies

 \[
 \frac{dy}{dx} = \frac{-2x - y}{x + 3y^2 - 1}.
 \]

 Write an equation for the tangent line to the curve D at the point $(2, 1)$. Show your work.
 Solution: We are given the coordinates of a point on the line so need only to find the slope, which is given by $\frac{dy}{dx}$. Plugging in the point $(2, 1)$ we find that the slope of the tangent line is

 \[
 \frac{dy}{dx} \bigg|_{(2,1)} = \frac{-2(2) - 1}{2 + 3(1)^2 - 1} = \frac{-5}{4}
 \]

 so $y = 1 - \frac{5}{4}(x - 2)$. Using point-slope form we find that an equation for the tangent line at $(2, 1)$ is

 \[
 y = 1 - \frac{5}{4}(x - 2).
 \]