8. [8 points]
a. [5 points] Consider the curve \mathcal{C} defined by the equation $\ln \left(x^{2}\right)+y=e^{4 y}$.

For this curve \mathcal{C}, find a formula for $\frac{d y}{d x}$ in terms of x and y. Clearly show every step of your work.
Solution:

$$
\begin{aligned}
\frac{d}{d x}\left(\ln \left(x^{2}\right)+y\right) & =\frac{d}{d x}\left(e^{4 y}\right) \\
\frac{2 x}{x^{2}}+\frac{d y}{d x} & =4 e^{4 y} \frac{d y}{d x} \\
\frac{2}{x} & =4 e^{4 y} \frac{d y}{d x}-\frac{d y}{d x} \\
\frac{2}{x} & =\frac{d y}{d x}\left(4 e^{4 y}-1\right) \\
\frac{2}{x\left(4 e^{4 y}-1\right)} & =\frac{d y}{d x}
\end{aligned}
$$

b. [3 points] Let \mathcal{D} be a different implicitly defined curve. The curve \mathcal{D} passes through the point $(2,1)$ and satisfies

$$
\frac{d y}{d x}=\frac{-2 x-y}{x+3 y^{2}-1}
$$

Write an equation for the tangent line to the curve \mathcal{D} at the point $(2,1)$. Show your work. Solution: We are given the coordinates of a point on the line so need only to find the slope, which is given by $\frac{d y}{d x}$. Plugging in the point $(2,1)$ we find that the slope of the tangent line is $\left.\frac{d y}{d x}\right|_{(2,1)}=\frac{-2(2)-1}{2+3(1)^{2}-1}=\frac{-5}{4} \quad$ so $y=1-\frac{5}{4}(x-2)$. Using point-slope form we find that an equation for the tangent line at $(2,1)$ is

$$
y=1-\frac{5}{4}(x-2) .
$$

