2. [9 points] Suppose $q(t)$ is a continuous function defined for all real numbers t. The derivative and second derivative of $q(t)$ are given by

$$
q^{\prime}(t)=t e^{t / 2}|t-3| \quad \text { and } \quad q^{\prime \prime}(t)=\frac{e^{t / 2}(t-3)(t-2)(t+3)}{2|t-3|} .
$$

Throughout this problem, you must use calculus to find and justify your answers. Make sure you show enough evidence to justify your conclusions.
a. [5 points] Find the t-coordinates of all local minimum(s) and local maximum(s) of $q(t)$. If there are none of a particular type, write none.

Answer: Local $\min (\mathrm{s})$ at $t=$ \qquad and Local max(es) at $t=$ \qquad
b. [4 points] Find the t-coordinates of all inflection points of $q(t)$, or write nONE if there are none.

Answer: Inflection point(s) at $t=$ \qquad

