

1. [9 points]

The graph of the function m(x) is shown to the right. Note that:

- m(x) is quadratic on [3, 5], and
- there is a corner at x = 3.

For parts \mathbf{a} .— \mathbf{d} ., find the **exact** values, or write DNE if the value does not exist. Your answers should not include the letter m but you do not need to simplify.

a. [1 point] Find m''(1).

Answer: $m''(1) = \underline{\hspace{1cm}}$

b. [2 points] Let $A(x) = \frac{m(x)}{x}$. Find A'(-2).

Solution:
$$A'(x) = \frac{xm'(x) - m(x)}{x^2}$$
 so $A'(-2) = \frac{-2(2) - 4}{(-2)^2} = \frac{-8}{4} = -2$

Answer: $A'(-2) = \underline{\qquad -2}$

c. [2 points] Let $B(x) = m(x) \ln(3x)$. Find B'(1).

Solution:
$$B'(x) = m(x)\frac{1}{3x} \cdot 3 + m'(x)\ln(3x)$$
 so $B'(1) = 1.5 \cdot \frac{1}{1} - \frac{1}{4}\ln(3)$

Answer: $B'(1) = \frac{\frac{3}{2} - \frac{1}{4}\ln(3)}{\frac{1}{2} - \frac{1}{4}\ln(3)}$

d. [2 points] Let $C(x) = m^{-1}(x)$. Find C'(1).

Solution: $C'(x) = \frac{1}{m'(m^{-1}(x))}$, so C'(1) would be $\frac{1}{m'(m^{-1}(1))} = \frac{1}{m'(3)}$, but m'(3) doesn't exist. Indeed, the graph of $C(x) = m^{-1}(x)$ would have a corner at x = 1 and so isn't differentiable there.

Answer: C'(1) = **DNE**

e. [2 points] On which of the following intervals does m(x) satisfy the hypotheses of the Mean Value Theorem? Circle all correct answers.

- [-1, 2]
- [0, 5]
- [3, 5]

NONE OF THESE