10. [7 points] The curve \mathcal{C} is given by the equation $e^{\cos \left(x^{2}-y^{2}\right)}=e x$.
a. [2 points] Which of the following points (x, y) lie on the curve \mathcal{C} ? Circle all correct answers.
$(1,1) \quad(-1,1) \quad(0, \sqrt{2}) \quad$ NONE OF THESE
b. [5 points] Compute $\frac{d y}{d x}$. Show every step of your work and circle your final answer.

Solution: Implicitly differentiating, we get: $e^{\cos \left(x^{2}-y^{2}\right)} \cdot\left(-\sin \left(x^{2}-y^{2}\right)\right) \cdot\left(2 x-2 y \frac{d y}{d x}\right)=e$.
Now we solve for $\frac{d y}{d x}$:

$$
\begin{aligned}
& 2 x-2 y \frac{d y}{d x}=\frac{e}{e^{\cos \left(x^{2}-y^{2}\right) \cdot\left(-\sin \left(x^{2}-y^{2}\right)\right)},} \\
& -2 y \frac{d y}{d x}=\frac{e}{e^{\cos \left(x^{2}-y^{2}\right) \cdot\left(-\sin \left(x^{2}-y^{2}\right)\right)}-2 x, ~} \\
& \frac{d y}{d x}=\frac{e}{-2 y e^{\cos \left(x^{2}-y^{2}\right)} \cdot\left(-\sin \left(x^{2}-y^{2}\right)\right)}-\frac{2 x}{-2 y}=\frac{e}{2 y e^{\cos \left(x^{2}-y^{2}\right)} \sin \left(x^{2}-y^{2}\right)}+\frac{x}{y} .
\end{aligned}
$$

Or, one can distribute the left-hand side first, to obtain the equivalent answer

$$
\frac{d y}{d x}=\frac{2 x e^{\cos \left(x^{2}-y^{2}\right)} \cdot \sin \left(x^{2}-y^{2}\right)+e}{2 y e^{\cos \left(x^{2}-y^{2}\right)} \cdot \sin \left(x^{2}-y^{2}\right)} .
$$

11. [8 points]

Suppose $h(x)$ is a function such that $h(x)$ has exactly three critical points. Assume that both $h(x)$ and $h^{\prime}(x)$ are differentiable on $(-\infty, \infty)$. A table of values is given to the right.

x	0	3	5	7
$h(x)$	2	$?$	4	4
$h^{\prime}(x)$	-1	0	0	$?$

a. [2 points] Note that $h(x)$ satisfies the hypotheses of the Mean Value Theorem on [5, 7]. Briefly explain why the conclusion of this theorem implies that one of the three critical points of $h(x)$ must be in the interval $5<x<7$.
Solution: The conclusion of the Mean Value Theorem applied to $h(x)$ on [5, 7] states that there exists a point c with $5<c<7$ such that $h^{\prime}(c)=\frac{h(7)-h(5)}{7-5}=\frac{4-4}{7-5}=0$, making c a critical point of $h(x)$ in the interval $5<x<7$.

In the parts below, circle all correct answers. No justification is needed.
b. [2 points] On which of the following intervals must $h(x)$ be increasing on the entire interval?
$(5,6)$
$(6,7)$
NONE OF THESE
c. [2 points] Which of the following could be the x-coordinate of a global minimum of $h(x)$ on $(-\infty, \infty)$?

$$
\begin{array}{llll}
x=0 & x=3 & x=5 & x=6 \quad \text { NONE OF THESE }
\end{array}
$$

d. [2 points] Also suppose that $h(x)$ is concave down on $(-\infty, 0)$. Which of the following could be the value of $h(-2)$?

