2. [9 points] Suppose $q(t)$ is a continuous function defined for all real numbers t. The derivative and second derivative of $q(t)$ are given by

$$
q^{\prime}(t)=t e^{t / 2}|t-3| \quad \text { and } \quad q^{\prime \prime}(t)=\frac{e^{t / 2}(t-3)(t-2)(t+3)}{2|t-3|} .
$$

Throughout this problem, you must use calculus to find and justify your answers. Make sure you show enough evidence to justify your conclusions.
a. [5 points] Find the t-coordinates of all local minimum(s) and local maximum(s) of $q(t)$. If there are none of a particular type, write none.

Solution: The critical points of q are where $q^{\prime}(t)=0$, which occurs at $t=0$ and $t=3$. There are no points at which q^{\prime} DNE.

(checking signs for 1st Derivative Test)	$t<0$	$0<x<3$	$3<t$
t	-	+	+
$e^{t / 2}$	+	+	+
$\|t-3\|$	+	+	+
$q^{\prime}(t)=t e^{t / 2}\|t-3\|$	$-\cdot+\cdot+=-$	$+\cdot+\cdot+=+$	$+\cdot+\cdot+=+$

This gives the following number line for $q^{\prime}(t)$:

By the First Derivative Test, $q(t)$ has a local min at $t=0$. There is no local extremum at $t=3$.

Answer: Local min(s) at $t=\ldots$ and \quad Local max (es) at $t=\underline{\text { NONE }}$
b. [4 points] Find the t-coordinates of all inflection points of $q(t)$, or write nONE if there are none.

Solution: We start by finding any values of t for which $q^{\prime \prime}(t)=0$ or $q^{\prime \prime}$ DNE, and find $t=-3$, 2 , and 3 . Now we need to check to see whether the concavity of q changes at these points:

Because the sign of the second derivative of q changes at each of these points, they are all inflection points.

Answer: Inflection point(s) at $t=$ \qquad

