3. [8 points] At a certain location in Lake Michigan, scientists are measuring water temperature. Let W(d) be the temperature, in degrees Fahrenheit (°F), of the water at a depth of d meters (m). Shown below is a table of values of W(d) and its derivative W'(d), which are both defined and differentiable for all $d \ge 0$.

d	10	18	20	36	78	95
W(d)	62	56	55	50	43	41
W'(d)	-1.25	-0.60	-0.45	-0.28	-0.15	-0.10

Assume that between each pair of consecutive values of d given in the table, each function W(d) and W'(d) is either always increasing or always decreasing. Throughout this problem, you do not need to include units or simplify numerical values.

a. [1 point] Use the table to approximate the value of W''(19).

Answer: $W''(19) \approx \frac{0.15}{2}$

b. [2 points] Write a formula for the linear approximation L(d) of W(d) near d=95.

Answer: $L(d) = \underline{\qquad \qquad 41 - 0.1(d - 95)}$

c. [1 point] Use your formula from part b. to approximate the water temperature, in ${}^{\circ}F$, of the water at a depth of 90 meters.

Answer: 41 - 0.1(90 - 95) = 41.5

d. [1 point] Is your estimate from part **c.** an overestimate, an underestimate, neither, or is there not enough information to decide? Circle your answer.

Circle One: Overestimate Underestimate Neither Not enough info

e. [3 points] The scientists are taking measurements using an underwater drone. The depth d, in meters, of the drone after t minutes of taking measurements can be modeled by $d = 3\sqrt{t}$. Let $R(t) = W(3\sqrt{t})$ be the temperature in $^{\circ}F$ outside the drone t minutes into the measurements. Write a formula for the linear approximation K(t) of R(t) near t = 36.

Solution: We know K(t) = R(36) + R'(36)(t - 36). Now, $R(36) = W(3\sqrt{36}) = W(18) = 56$. Also, $R'(t) = W'(3\sqrt{t}) \cdot \frac{3}{2\sqrt{t}}$ by the Chain Rule, so $R'(36) = W'(18) \cdot \frac{3}{12} = -\frac{0.6}{4}$.

Answer: K(t) = $56 - \frac{0.6}{4}(t - 36)$