3. [8 points] At a certain location in Lake Michigan, scientists are measuring water temperature. Let $W(d)$ be the temperature, in degrees Fahrenheit $\left({ }^{\circ} F\right)$, of the water at a depth of d meters (m). Shown below is a table of values of $W(d)$ and its derivative $W^{\prime}(d)$, which are both defined and differentiable for all $d \geq 0$.

d	10	18	20	36	78	95
$W(d)$	62	56	55	50	43	41
$W^{\prime}(d)$	-1.25	-0.60	-0.45	-0.28	-0.15	-0.10

Assume that between each pair of consecutive values of d given in the table, each function $W(d)$ and $W^{\prime}(d)$ is either always increasing or always decreasing. Throughout this problem, you do not need to include units or simplify numerical values.
a. [1 point] Use the table to approximate the value of $W^{\prime \prime}(19)$.

b. [2 points] Write a formula for the linear approximation $L(d)$ of $W(d)$ near $d=95$.

Answer: $L(d)=\frac{41-0.1(d-95)}{}$
c. [1 point] Use your formula from part \mathbf{b}. to approximate the water temperature, in ${ }^{\circ} F$, of the water at a depth of 90 meters.

Answer: $\quad 41-0.1(90-95)=41.5$
d. [1 point] Is your estimate from part c. an overestimate, an underestimate, neither, or is there not enough information to decide? Circle your answer.

Circle One: Overestimate underestimate neither not enough info
e. [3 points] The scientists are taking measurements using an underwater drone. The depth d, in meters, of the drone after t minutes of taking measurements can be modeled by $d=3 \sqrt{t}$. Let $R(t)=W(3 \sqrt{t})$ be the temperature in ${ }^{\circ} F$ outside the drone t minutes into the measurements. Write a formula for the linear approximation $K(t)$ of $R(t)$ near $t=36$.

Solution: We know $K(t)=R(36)+R^{\prime}(36)(t-36)$. Now, $R(36)=W(3 \sqrt{36})=W(18)=56$. Also, $R^{\prime}(t)=W^{\prime}(3 \sqrt{t}) \cdot \frac{3}{2 \sqrt{t}}$ by the Chain Rule, so $R^{\prime}(36)=W^{\prime}(18) \cdot \frac{3}{12}=-\frac{0.6}{4}$.

Answer: $K(t)=\frac{56-\frac{0.6}{4}(t-36)}{}$

