4. [4 points] Shown below are portions of the graphs of $y=f(x), y=f^{\prime}(x)$, and $y=f^{\prime \prime}(x)$. Determine which graph is which, and then, on the answer lines below, indicate after each function the letter A, B, or C that corresponds to its graph. No work or justification is needed.

Answer: $\quad f(x)$: \qquad
$f^{\prime}(x): \quad \mathrm{A}$
$f^{\prime \prime}(x): \quad$ C
5. [7 points] The function $p(x)$ is given by the following formula, where c and d are nonzero constants:

$$
p(x)= \begin{cases}\frac{1}{3} x^{3}-9 x+1 & x \leq 0 \\ 2^{x} & 0<x<2 \\ c+d(x-2) & x \geq 2\end{cases}
$$

a. [3 points] Find one pair of values for c and d such that $p(x)$ is differentiable at $x=2$. Show your work.

Solution: For $p(x)$ to be differentiable at $x=2$, it must first be continuous there, so we need $c+d(2-2)=c$ to equal $2^{2}=4$. Then, we need the slopes on either side of $x=2$ to be the same. For $0<x<2$ we have $p^{\prime}(x)=\ln (2) 2^{x}$, while for $x>2$ we have $p^{\prime}(x)=d$, so we need $d=\ln (2) 2^{2}$.

$$
\text { Answer: } \quad c=\quad 4 \quad \text { and } \quad d=\frac{4 \ln (2)}{}
$$

b. [4 points] For the values of c and d from part a., find the x-coordinates of all critical points of $p(x)$ or write none if there are none. Show your work.

Solution: For $x<0$ we have $p^{\prime}(x)=x^{2}-9$. Then, as above, for $0<x \geq 2$ we have $p^{\prime}(x)=\ln (2) 2^{x}$, while for $x \geq 2$ we have $p^{\prime}(x)=d=4 \ln (2)$. Recall that we chose the values of c and d in part a. so that $p(x)$ was differentiable at $x=2$, so we know $p^{\prime}(2)$ exists. However, we need to consider whether $p^{\prime}(x)$ exists at $x=0$: to the left of $x=0$, the slope is $0^{2}-9=-9$, while to the right, the slope is $\ln (2)$, and since these are not equal, $p^{\prime}(x)$ does not exist at $x=0$, which is therefore a critical point of $p(x)$.

Then, we note that $p^{\prime}(x)$ is never 0 for $x>0$, but $x^{2}-9=0$ when $x= \pm 3$. However, this formula is only relevant for $x<0$, so this only gives -3 as an additional critical point.

Answer: Critical point(s) at $x=$ \qquad

