8. [7 points] The function \(f(x) \) is defined as follows:

\[
f(x) = \begin{cases}
 x & x \leq 0 \\
 \frac{x}{x^2 + 1} & x > 0.
\end{cases}
\]

Note that the formula for \(f(x) \) for \(x > 0 \) is unknown. However, it is known that \(f(x) \) is differentiable at each point in its domain \((-\infty, \infty)\), and that \(f'(x) > 0 \) for all \(x \geq 0 \).

a. [4 points] Find the \(x \)-coordinates of all global minimum(s) and global maximum(s) of \(f(x) \) on the interval \((-\infty, 0]\). If there are none of a particular type, write NONE. Use calculus to find your answers, and make sure that you show enough evidence to justify your conclusions.

Solution: First, using the quotient rule, we find that \(f'(x) = \frac{1 - x^2}{(x^2 + 1)^2} \) for \(x < 0 \). There are no values of \(x \) where this is undefined, so to find critical points, we set \(f'(x) \) equal to 0 to find that \(x = \pm 1 \). However, this formula is only relevant for \(x < 0 \) so our only critical point for \(x < 0 \) is \(x = -1 \).

Then, we see that

<table>
<thead>
<tr>
<th>(x)</th>
<th>(f(x))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>-1</td>
<td>(-1)</td>
</tr>
<tr>
<td>(\lim_{x \to -\infty} f(x))</td>
<td>0</td>
</tr>
</tbody>
</table>

Then we have a global min at \(x = -1 \), and a global max at \(x = 0 \).

Answer: Global min(s) at \(x = -1 \)

Answer: Global max(es) at \(x = 0 \)

b. [3 points] For each question below, circle all correct answers. No justification is needed.

At which of the following value(s) of \(x \) does \(f(x) \) attain a global minimum on the interval \([-2, 2]\)?

\[
\begin{array}{c|c|c|c|c|c}
 x = -2 & x = -1 & x = 0 & x = 1 & x = 2 & \text{NONE OF THESE}
\end{array}
\]

At which of the following value(s) of \(x \) does \(f(x) \) attain a global maximum on the interval \([-2, 2]\)?

\[
\begin{array}{c|c|c|c|c|c}
 x = -2 & x = -1 & x = 0 & x = 1 & \boxed{x = 2} & \text{NONE OF THESE}
\end{array}
\]