9. [7 points]

You are on a hiking trip, following the path modeled by the curve \mathcal{B} defined by the equation

$$
y^{2}=x^{4}\left(1-x^{2}\right)
$$

Note that

$$
\frac{d y}{d x}=\frac{x^{3}\left(2-3 x^{2}\right)}{y} .
$$

The graph of \mathcal{B} is shown to the right. You begin your hike at $(0,0)$, then:

- travel East and around the loop on the right as shown by the arrow, returning to $(0,0)$, then
- travel West and around the loop on the left as shown by the arrow, returning to $(0,0)$.
a. [5 points] Using calculus, find the coordinates of all the other points (x, y) on your path (that is, other than $(0,0))$, where you travel directly East or directly West. Show your work. Note that you can use the graph to determine how many points you are looking for.
Solution: We look for where the numerator of $\frac{d y}{d x}$ is 0 , i.e. $x^{3}\left(2-3 x^{2}\right)=0$. We ignore the solution $(0,0)$, so we need $2-3 x^{2}=0$ or $x= \pm \sqrt{\frac{2}{3}}$. Then

$$
\begin{gathered}
y^{2}=\left(\pm \sqrt{\frac{2}{3}}\right)^{4}\left(1-\left(\pm \sqrt{\frac{2}{3}}\right)^{2}\right) \\
y^{2}=\frac{4}{9}\left(1-\frac{2}{3}\right)=\frac{4}{9} \cdot \frac{1}{3}=\frac{4}{27}
\end{gathered}
$$

so $y= \pm \frac{2}{3 \sqrt{3}}$. We can see which direction we are traveling at these points from the graph.

Answer: travel East at
$\left(\sqrt{\frac{2}{3}},-\frac{2}{3 \sqrt{3}}\right),\left(-\sqrt{\frac{2}{3}},-\frac{2}{3 \sqrt{3}}\right)$

Answer: travel West at

$$
\left(\sqrt{\frac{2}{3}}, \frac{2}{3 \sqrt{3}}\right),\left(-\sqrt{\frac{2}{3}}, \frac{2}{3 \sqrt{3}}\right)
$$

b. [2 points] Using calculus, find the coordinates of all the points (x, y) on your path where you travel directly North or directly South. Note that, as shown by the graph, $(0,0)$ is not one of these points. Show your work.
Solution: We look for where the denominator of $\frac{d y}{d x}$ is 0 , i.e. $y=0$. Then $0=x^{4}\left(1-x^{2}\right)$ so either $x=0$ or $x= \pm 1$. We ignore $(0,0)$, so the points are $(1,0)$ and $(-1,0)$.

Answer: travel North at \qquad

Answer: travel South at \qquad

