1. [10 points] Some values of the invertible, differentiable function G(t) are shown in the table below, along with some values of G'(t), the <u>derivative</u> of G(t).

t	0	1	2	3	4	5	6
G(t)	0	2	5	7	8	10	11
G'(t)	0	5	1	2	1	3	0

For parts \mathbf{a} . – \mathbf{d} ., find the **exact** numerical values, or write DNE if the value does not exist. Your answers should not include the letter G, but you do not need to simply. Show your work.

a. [2 points] Let $P(t) = t^3 G(t)$. Find P'(2).

Answer: P'(2) = _____

b. [2 points] Let
$$A(t) = \frac{G(3t+2)}{2t+1}$$
. Find $A'(1)$.

Answer: A'(1) = _____

c. [2 points] Let $K(t) = G^{-1}(t)$. Find K'(2).

Answer: K'(2) = _____

d. [2 points] Let $R(t) = \ln(G(t))$. Find R'(5).

Answer: R'(5) = _____

e. [2 points] Gabby the gopher is furiously digging an underground tunnel. Suppose G(t) gives the length in meters of Gabby's tunnel t hours after she started digging at 6am.

Fill in the blank with a number to give a practical interpretation of the fact that G'(5) = 3.

Gabby's tunnel was about ______ meters longer at 11:05am than it was at 10:55am.

© 2023 Univ of Michigan Dept of Mathematics Creative Commons BY-NC-SA 4.0 International License