10. [8 points] Water is pouring at a constant positive rate into a circular planter of height 40 inches, whose profile from the side is displayed below. For $0 \leq t \leq 10$, let $D(t)$ be the depth in inches of the water in the planter $t$ minutes after water first starts pouring into the planter.

Assume the first and second derivatives of $D(t)$ exist and are continuous on the interval $(0,10)$. We know that it takes exactly ten minutes for the water to fill the planter completely, so $D(0)=0$ and $D(10)=40$.

Let $v, w, x, y, z$ be the times, in minutes, that it takes the water level in the planter to reach the heights $V, W, X, Y$, and $Z$, respectively, that are shown in the figure. So, for instance, $Y=D(y)$. Note that $X$ is the height at which the planter is the widest, and heights $W$ and $Y$ correspond to inflection points in the curve that gives the profile of the planter.

a. [2 points] Determine whether each statement below is true or false. Indicate your answer by clearly writing TRUE or FALSE on the blank before each statement.
(i) $\qquad$ The function $D(t)$ is increasing on the interval $[0,10]$.
(ii) $\qquad$ The function $D(t)$ is invertible on the interval [0,10].
b. [1 point] How does $D(5)$ compare with 20 ? Circle the correct statement below.
$D(5)<20$
$D(5)=20$
$D(5)>20$
c. [1 point] Circle all points below at which the derivative $D^{\prime}(t)$ attains a global maximum on the interval $[v, z]$.
$v$
$w$
$x$
$y$
$z$
NONE OF THESE
d. [1 point] Circle all points below at which the derivative $D^{\prime}(t)$ attains a global minimum on the interval $[v, z]$.

```
v w y NONE OF THESE
```

e. [1 point] Circle all intervals below on which the derivative $D^{\prime}(t)$ is increasing.

$$
\begin{array}{llll}
(v, w) & (w, x) & (x, y) & (y, z) \quad \text { NONE OF THESE }
\end{array}
$$

f. [1 point] Circle all intervals below on which the function $D(t)$ is concave up.

$$
(v, w) \quad(w, x) \quad(y, z) \quad \text { NONE OF THESE }
$$

g. [1 point] Circle all inflection points of the function $D(t)$ on the interval $(0,10)$.
$v \quad x \quad y \quad$ NONE OF THESE

