6. [6 points] Let \mathcal{C} be the curve implicitly defined by the equation $x y=y^{2}+2 x$. Note that

$$
\frac{d y}{d x}=\frac{2-y}{x-2 y} .
$$

a. [3 points] Find the coordinates of all points on the curve \mathcal{C} where the tangent line to \mathcal{C} is horizontal. If no such points exist, write DNE and show work to justify your answer.

Answer:

b. [3 points] Find the coordinates of all points on the curve \mathcal{C} where the tangent line to \mathcal{C} is vertical. If no such points exist, write DNE and show work to justify your answer.

Answer:

7. [5 points] The equation $\sin \left(x^{3}\right)+x^{2} y=1+y^{2}$ defines y implicitly as a function of x. Find a formula for $\frac{d y}{d x}$ in terms of x and y. Show every step of your work.

Answer: $\frac{d y}{d x}=$ \qquad

