8. [8 points] Suppose $k(x)$ is a continuous function, defined for all real numbers. A portion of the graph of $k^{\prime}(x)$, the derivative of $k(x)$, is given below. Note that $k^{\prime}(x)$ has a vertical asymptote at $x=5$ and a sharp corner at $x=9$.

a. [2 points] Circle the least value that is listed below.

$$
k(-1) \quad k(0) \quad k(1) \quad k(2)
$$

b. [2 points] Circle the least value that is listed below.

$$
\begin{array}{llll}
k^{\prime \prime}(-2) & k^{\prime \prime}(-1) & k^{\prime \prime}(0) & k^{\prime \prime}(1) \tag{2}
\end{array}
$$

c. [2 points] Circle all points listed below that are inflection points of $k(x)$.

$$
x=\frac{1}{2} \quad x=2 \quad x=3 \quad x=6 \quad x=9 \quad \text { NONE OF THESE }
$$

d. [1 point] On which of the following intervals does $\underline{k^{\prime}(x)}$ satisfy the hypotheses of the Mean Value Theorem? Circle all correct answers.
$[-1,3]$
$[3,5]$
$[6,8]$
$[8,9]$
$[8,10]$
NONE OF THESE
e. [1 point] On which of the following intervals does $\underline{k(x)}$ satisfy the hypotheses of the Mean Value Theorem? Circle all correct answers.
$[-1,3]$
$[3,5]$
$[6,8]$
$[8,9]$
$[8,10]$
NONE OF THESE

