1. [10 points] Some values of the invertible, differentiable function G(t) are shown in the table below, along with some values of G'(t), the <u>derivative</u> of G(t).

t	0	1	2	3	4	5	6
G(t)	0	2	5	7	8	10	11
G'(t)	0	5	1	2	1	3	0

For parts \mathbf{a} . – \mathbf{d} ., find the **exact** numerical values, or write DNE if the value does not exist. Your answers should not include the letter G, but you do not need to simply. Show your work.

a. [2 points] Let $P(t) = t^3 G(t)$. Find P'(2). Solution: $P'(t) = 3t^2 G(t) + t^3 G'(t)$, so $P'(2) = 3 \cdot 2^2 G(2) + 2^3 G'(2) = 12 \cdot 5 + 8 \cdot 1 = 68.$

Answer: P'(2) =<u>68</u>

b. [2 points] Let $A(t) = \frac{G(3t+2)}{2t+1}$. Find A'(1).

Solution:
$$A'(t) = \frac{3G'(3t+2)(2t+1) - 2G(3t+2)}{(2t+1)^2}$$
, so
 $A'(1) = \frac{3G'(5) \cdot 3 - 2G(5)}{3^2} = \frac{27 - 20}{9} = \frac{7}{9}.$

Answer: A'(1) = -7/9

c. [2 points] Let $K(t) = G^{-1}(t)$. Find K'(2).

Solution:
$$K'(2) = \frac{1}{G'(G^{-1}(2))} = \frac{1}{G'(1)} = \frac{1}{5}$$
.
Answer: $K'(2) = \underline{1/5}$

d. [2 points] Let $R(t) = \ln(G(t))$. Find R'(5).

Solution: $R'(t) = \frac{1}{G(t)} \cdot G'(t)$, so $R'(5) = \frac{1}{G(5)} \cdot G'(5) = \frac{3}{10}$. **Answer:** $R'(5) = \underline{\qquad 3/10}$

e. [2 points] Gabby the gopher is furiously digging an underground tunnel. Suppose G(t) gives the length in meters of Gabby's tunnel t hours after she started digging at 6am.

Fill in the blank with a number to give a practical interpretation of the fact that G'(5) = 3.

Solution: The interval from 10:55 to 11:05 is ten minutes, which is one-sixth of an hour, so we need to divide G'(5) by 6.

Gabby's tunnel was about 1/2 meters longer at 11:05am than it was at 10:55am.