1. [10 points] Some values of the invertible, differentiable function $G(t)$ are shown in the table below, along with some values of $G^{\prime}(t)$, the derivative of $G(t)$.

t	0	1	2	3	4	5	6
$G(t)$	0	2	5	7	8	10	11
$G^{\prime}(t)$	0	5	1	2	1	3	0

For parts a. - d., find the exact numerical values, or write DNE if the value does not exist. Your answers should not include the letter G, but you do not need to simply. Show your work.
a. [2 points] Let $P(t)=t^{3} G(t)$. Find $P^{\prime}(2)$.

$$
\begin{aligned}
& \text { Solution: } P^{\prime}(t)=3 t^{2} G(t)+t^{3} G^{\prime}(t) \text {, so } \\
& \qquad P^{\prime}(2)=3 \cdot 2^{2} G(2)+2^{3} G^{\prime}(2)=12 \cdot 5+8 \cdot 1=68
\end{aligned}
$$

Answer: $\quad P^{\prime}(2)=$ \qquad
b. [2 points] Let $A(t)=\frac{G(3 t+2)}{2 t+1}$. Find $A^{\prime}(1)$.

$$
\begin{gathered}
\text { Solution: } A^{\prime}(t)=\frac{3 G^{\prime}(3 t+2)(2 t+1)-2 G(3 t+2)}{(2 t+1)^{2}} \text {, so } \\
A^{\prime}(1)=\frac{3 G^{\prime}(5) \cdot 3-2 G(5)}{3^{2}}=\frac{27-20}{9}=\frac{7}{9} .
\end{gathered}
$$

Answer: $\quad A^{\prime}(1)=$ \qquad
c. [2 points] Let $K(t)=G^{-1}(t)$. Find $K^{\prime}(2)$.

$$
\text { Solution: } \quad K^{\prime}(2)=\frac{1}{G^{\prime}\left(G^{-1}(2)\right)}=\frac{1}{G^{\prime}(1)}=\frac{1}{5}
$$

Answer: $\quad K^{\prime}(2)=$ \qquad
d. [2 points] Let $R(t)=\ln (G(t))$. Find $R^{\prime}(5)$.

$$
\begin{aligned}
\text { Solution: } \quad R^{\prime}(t)=\frac{1}{G(t)} \cdot G^{\prime}(t), \text { so } R^{\prime}(5)=\frac{1}{G(5)} \cdot G^{\prime}(5)= & \frac{3}{10} . \\
& \text { Answer: } \quad R^{\prime}(5)=\square
\end{aligned}
$$

e. [2 points] Gabby the gopher is furiously digging an underground tunnel. Suppose $G(t)$ gives the length in meters of Gabby's tunnel t hours after she started digging at 6am.

Fill in the blank with a number to give a practical interpretation of the fact that $G^{\prime}(5)=3$.
Solution: The interval from 10:55 to 11:05 is ten minutes, which is one-sixth of an hour, so we need to divide $G^{\prime}(5)$ by 6 .

Gabby's tunnel was about \qquad meters longer at 11:05am than it was at 10:55am.

