3. [4 points] Shown below are portions of the graphs of the functions $y=f(x), y=f^{\prime}(x)$, and $y=f^{\prime \prime}(x)$. Determine which graph is which, and then, on the answer lines below, indicate after each function the letter A, B, or C that corresponds to its graph. No work or justification is needed.

Answer: $f(x): \quad \mathrm{C}$

$$
f^{\prime}(x): \quad \mathrm{B}
$$ $f^{\prime \prime}(x)$: \qquad

4. [8 points] Suppose $f(x)$ and $g(x)$ are functions that have exactly the same four critical points, namely at $x=1, x=3, x=5$, and $x=7$. Note that f and g have no other critical points beyond these four. Assume the first and second derivatives of $f(x)$ and $g(x)$ exist everywhere.
The table below shows some values of $f^{\prime}(x)$ and $g^{\prime \prime}(x)$ at certain inputs. Note that the table gives values of the first derivative of $f(x)$ and the second derivative of $g(x)$.

x	0	1	2	3	4	5	6	7	8
$f^{\prime}(x)$	3	0	-1	0	1	0	2	0	$?$
$g^{\prime \prime}(x)$	$?$	0	-1	-4	$?$	0	$?$	2	1

a. [4 points] Use the table to classify each critical point of f as a local minimum, maximum, or neither of f. Circle your answer. If there is not enough information to decide, circle NeI.

i. $x=1$ is a	LOCAL MIN of f	LOCAL MAX of f	NEITHER	NEI
ii. $x=3$ is a	LOCAL MIN of f	LOCAL MAX of f	NEITHER	NEI
iii. $x=5$ is a	LOCAL MIN of f	LOCAL MAX of f	NEITHER	NEI
iv. $x=7$ is a	LOCAL MIN of f	LOCAL MAX of f	NEITHER	NEI

b. [4 points] Use the table to classify each critical point of g as a local minimum, maximum, or neither of g. Circle your answer. If there is not enough information to decide, circle NEI.

i. $x=1$ is a	LOCAL MIN of g	LOCAL MAX of g	NEITHER	NEI
ii. $x=3$ is a	LOCAL MIN of g	LOCAL MAX of g	NEITHER	NEI
iii. $x=5$ is a	LOCAL MIN of g	LOCAL MAX of g	NEITHER	NEI
iv. $x=7$ is a	LOCAL MIN of g	LOCAL MAX of g	NEITHER	NEI

Solution: Part a. follows from the First Derivative Test, and most of b. from the Second Derivative Test. For b.(iii.), note that g must be decreasing on both $(3,5)$ and $(5,7)$ since $x=5$ is the only critical point of g on $(3,7)$ and we have $g^{\prime \prime}(3)<0$ but $g^{\prime \prime}(7)>0$.

