9. [10 points] The continuous function $w(x)$ is defined piecewise for all real numbers by the rule

$$
w(x)= \begin{cases}-x^{2}+3 x+1 & x<-1 \\ 3 x^{1 / 3} & -1 \leq x \leq 1 \\ -x^{2}+3 x+1 & x>1\end{cases}
$$

a. [5 points] Find the x-coordinates of all critical points of $w(x)$. If there are none, write none. Show your work.

Solution: We must find all x for which $w^{\prime}(x)$ is either zero or does not exist. We have

$$
w^{\prime}(x)=\left\{\begin{array}{lll}
3-2 x & x<1 ; & \text { Note that } w^{\prime}(-1) \text { DNE since } 3-2(-1) \neq(-1)^{-2 / 3} \text {, while } \\
x^{-2 / 3} & -1<x<1 ; & w^{\prime}(1)=1 \text { since } 3-2(1)=1=(1)^{-2 / 3} . \text { Now, } 3-2 x=0 \\
3-2 x & x>1 ; & \text { when } x=\frac{3}{2}, \text { and } x^{-2 / 3} \text { is never zero but is undefined when } \\
\text { DNE } & x=-1 ; & x=0 . \text { Thus the critical points of } w(x) \text { are: } \\
1 & x=1 . & x=-1, x=0, \text { and } x=3 / 2 .
\end{array}\right.
$$

Answer: Critical point(s) at $x=$ \qquad
b. [3 points] Let $L(x)$ be the linear approximation of the function $w(x)$ at the point $x=\frac{1}{2}$. Find a formula for $L(x)$. Your answer should not include the letter w, but you do not need to simplify.

Solution: The linear approximation of $w(x)$ at $x=\frac{1}{2}$ is

$$
\begin{aligned}
L(x) & =w\left(\frac{1}{2}\right)+w^{\prime}\left(\frac{1}{2}\right)\left(x-\frac{1}{2}\right) \\
& =3\left(\frac{1}{2}\right)^{1 / 3}+\left(\frac{1}{2}\right)^{-2 / 3}\left(x-\frac{1}{2}\right)=\frac{3}{\sqrt[3]{2}}+\sqrt[3]{4}\left(x-\frac{1}{2}\right) .
\end{aligned}
$$

Answer: $L(x)=\underline{3\left(\frac{1}{2}\right)^{1 / 3}+\left(\frac{1}{2}\right)^{-2 / 3}\left(x-\frac{1}{2}\right)}$
c. [2 points] Does $L(x)$ give an overestimate or underestimate for $w(x)$ near $x=\frac{1}{2}$? Circle your answer below, and show work to justify your answer.

UNDERESTIMATE

OVERESTIMATE

Solution: $L(x)$ gives an overestimate for $w(x)$ near $x=\frac{1}{2}$ if $w(x)$ is concave down near $\frac{1}{2}$, and an underestimate if $w(x)$ is concave up near $\frac{1}{2}$. We can determine the concavity of $w(x)$ near $\frac{1}{2}$ by looking at the sign of $w^{\prime \prime}(x)$. Near $x=\frac{1}{2}$, we have

$$
w^{\prime}(x)=x^{-2 / 3}, \quad \text { so } \quad w^{\prime \prime}(x)=-\left(\frac{2}{3}\right) x^{-4 / 3} \quad \text { and } \quad w^{\prime \prime}\left(\frac{1}{2}\right)=-\left(\frac{2}{3}\right)\left(\frac{1}{2}\right)^{-4 / 3}<0 .
$$

Thus $w(x)$ is concave down near $x=\frac{1}{2}$, so $L(x)$ gives an overestimate.

