(1.) (2 pts each) **True / False--**Circle your choice. Circle **T** only if the statement is *always* true. [No explanation necessary.]

(a) If a function is differentiable, then it is continuous.	Т	F
(b) If a function is continuous, then it is differentiable.	Т	F
(c) If $f'(x)$ is increasing, then f is concave up.	Т	F
(d) If $f''(x) = -3$, then f is decreasing.	Т	F
(e) If <i>f</i> has a critical point at <i>x</i>=3, then <i>f</i> has a local maximum or a local minimum at <i>x</i>=3.	Т	F

(2.)	Given :	r(2) = 2	and	s(2) = 1
		r(4) = -1		s(4) = 2
		r'(2) = 5		s'(2) = 3
		r'(4) = -3		s'(4) = 4

Determine the values indicated below *or* state clearly what information is needed (and not supplied) to determine the requested value. In each case, first determine a general formula for the derivative function and then find the requested value (if possible). [Circle your answers.]

(3 pts each) Find: (a) H'(2) if H(x) = ln(r(x))

(b)
$$H'(2)$$
 if $H(x) = \frac{s(x)}{r(x)}$

(c)
$$H'(2)$$
 if $H(x) = \sqrt{s(x)}$