9. (4 points) Let \(f, g \) be functions such that \(f''(x) > 0 \) and \(g''(x) < 0 \) for all \(x \). In how many points can the graphs of \(f \) and \(g \) intersect? Circle all possible answers.

(i) no points
(ii) 1 point
(iii) 2 points
(iv) 3 points
(v) infinitely many points

10. (7 points) (a) The figure below shows graphs of a function \(f \) and its first and second derivatives, \(f' \) and \(f'' \). Identify by the label on the graph which function is \(f \), which is \(f' \), and which is \(f'' \).

![Graphs of f, f', and f''](rb) A is the graph of ____
B is the graph of ____
C is the graph of ____
(b) Give a clear explanation of your reasoning for the choices you made in part (a).