OR: A the temp in crease to 24°, my hie zine" decrease 3. (7 points) Suppose that $\mathcal{T}(T)$ is the cost to heat my house, in dollars per day, when the outside temperature is T degrees Fahrenheit.
(a) What does $f^{\prime}(23)=-0.17$ mean in the context of this problem?

Cohen the temperature io $23^{\circ} \mathrm{F}$, my costs are

 devreaing at the late of agpreaniesth 12 C / danger dish.(b) If $f(23)=7.54$, and $f^{\prime}(23)=-0.17$, what is the approximate cost to heat my house when the outside temperature is 20 degrees Fahrenheit?

$$
\begin{aligned}
f(20) & \approx f(23)-0.17(20-23) \\
& =7.54+0.17(3)=10.05 \mathrm{prda}
\end{aligned}
$$

4. (8 points) An object is moving on a straight line so that its distance (measured in feet) to the right of a fixed point on the line at time t (measured in seconds) is given by the function s whose graph is in the following figure.

(a) At what times (approximately) is the object moving to the right? to the left?

$$
\begin{aligned}
& 7<t<0 \text {. } 3+x \text { leg goo } 3<t<7 \text {. }
\end{aligned}
$$

(b) At what times (approximately) does the object have positive acceleration? negative acceleration? (Explain what properties of the graph give you this information.)

