1. (2 points each) Circle "True" if the statement is always true. Otherwise, circle "False." No explanation is necessary.
(a) Let f be a continuous function on the interval $[1,10]$ and differentiable on $(1,10)$. Suppose that $f(5)=3$ and $f(2)=1$. Then there is a point c in the interval $(2,5)$ so that $f^{\prime}(c)=\frac{2}{3}$.

True False

(b) If $g(x)=\frac{1}{f(x)}$, then $g^{\prime}(x)=-\frac{1}{\left[f^{\prime}(x)\right]^{2}}$.

$$
\text { True } \quad \text { False }
$$

(c) If a is a local maximum for the function f on the interval $[2,50]$, then $f^{\prime}(a)=0$.

$$
\text { True } \quad \underline{\text { False }}
$$

(d) If $g(x)=f^{-1}(x)$, then $g^{\prime}(x)=(-1) f^{-2}(x)$.

$$
\text { True } \quad \text { False }
$$

(e) The $100^{\text {th }}$ derivative of $f(x)=x^{5}+e^{2 x}$ at $x=0$ is 2^{100}.

$$
\text { True } \quad \text { False }
$$

(f) If $f(x)=(x-1)(x-2)(x-3)(x-4)(x-5)(x-6)$, then $f^{\prime}(x)=(x-1)+(x-2)+(x-3)+$ $(x-4)+(x-5)+(x-6)$.

$$
\text { True } \quad \text { False }
$$

(g) If f is continuous on $[a, b]$, then f has a global maximum and a global minimum on that interval.
True False

