8. (10 points) The ideal gas law relates the volume and pressure of a gas to the temperature of the gas. The formula can be given as

$$
P V=c T
$$

where $P$ is the pressure of the gas measured in atmospheres, $V$ is the volume of the gas measured in liters, $c$ is a positive constant, and $T$ is the temperature of the gas measured in kelvins. (Remember, a temperature measured in kelvins is always positive!)
(a) If $T$ is held constant, find $\frac{d V}{d P}$.

Assuming $P \neq 0$ we can rewrite the equation as $V=\frac{c T}{P}$. Now we just use the power rule to obtain $\frac{d V}{d P}=-\frac{c T}{P^{2}}$.
(b) What is the meaning of the sign of your answer to part (a)? Explain this in everyday terms.

Noting that $c, T$, and $P$ are all positive quantities, part (a) tells us that $\frac{d V}{d P}$ is negative. This says that $V$ is a decreasing function of $P$. What this means in everyday terms is that as one increases the pressure on a gas, the volume of the gas goes down.
(c) Suppose $V, P$, and $T$ are all functions of the time $t$. Find $\frac{d T}{d t}$.

Taking the derivative with respect to $t$ on each side of the equation we have:

$$
V \frac{d P}{d t}+P \frac{d V}{d t}=c \frac{d T}{d t} .
$$

Thus, we have

$$
\frac{d T}{d t}=\frac{1}{c}\left(V \frac{d P}{d t}+P \frac{d V}{d t}\right) .
$$

