9. (12 points) On a spring day the morning sun is rising at the rate of $\frac{12 \pi}{180}$ radians per hour. How fast is the shadow cast by a building that is 30 meters high changing when the sun is $\frac{\pi}{4}$ radians above the horizon in the morning? The following picture may be helpful.


Let $x$ denote the length of the shadow. Then we have the equation $\tan (\theta)=\frac{30}{x}$ relating $\theta$ to $x$. Since we are interested in $\frac{d x}{d t}$, we differentiate this formula with respect to $t$ and obtain:

$$
\frac{1}{\cos ^{2}(\theta)} \frac{d \theta}{d t}=-\frac{30}{x^{2}} \frac{d x}{d t} .
$$

Now we are interested in finding $\frac{d x}{d t}$ when $\theta=\frac{\pi}{4}$, so we need to find $x, \frac{1}{\cos ^{2}\left(\frac{\pi}{4}\right)}$, and $\frac{d \theta}{d t}$ in this case. $x$ can be found from our original equation to be $x=\frac{30}{\tan \left(\frac{\pi}{4}\right)}=30$ meters. $\frac{1}{\cos \left(\frac{\pi}{4}\right)}=\frac{2}{\sqrt{2}}$. So $\frac{1}{\cos ^{2}\left(\frac{\pi}{4}\right)}=2$. We are given that $\frac{d \theta}{d t}=\frac{12 \pi}{180}$ regardless of the value of $\theta$. So now we just solve for $\frac{d x}{d t}$ and plug in the values we have just found to conclude that

$$
\begin{aligned}
\frac{d x}{d t} & =-\frac{30^{2}}{30} \frac{1}{\cos ^{2}\left(\frac{\pi}{4}\right)} \frac{d \theta}{d t} \\
& =-30 \cdot 2 \cdot \frac{12 \pi}{180} \\
& =-12.57 \mathrm{~m} / \mathrm{hr} .
\end{aligned}
$$

Thus the length of the shadow is decreasing at 12.57 meters per hour when the sun is $\frac{\pi}{4}$ radians above the horizon in the morning.

