4. (12 points) An example of Descartes' folium, shown in the picture below, is given by $x^{3}+y^{3}=6 x y$.

(a) Show that the point $(3,3)$ is on the graph.

To show that the point $(3,3)$ is on the graph, we must check that plugging in $x=3$ and $y=3$ into the given equation makes both the left hand side and the right hand side equal to each other. Indeed, $x^{3}+y^{3}=3^{3}+3^{3}=54$ and $6 x y=6(3)(3)=54$, so the point $(3,3)$ is on the graph.
(b) Find the equation of the tangent to the graph at the point $(3,3)$. Show your work.

We must first implicitly differentiate the given equation:
$3 x^{2}+3 y^{2} \frac{d y}{d x}=6 x \frac{d y}{d x}+6 y$
$3 y^{2} \frac{d y}{d x}-6 x \frac{d y}{d x}=6 y-3 x^{2}$
$\frac{d y}{d x}\left(3 y^{2}-6 x\right)=6 y-3 x^{2}$
$\frac{d y}{d x}=\frac{6 y-3 x^{2}}{3 y^{2}-6 x}$.
So, at the point (3,3), the slope of the tangent to the curve equals $\frac{6(3)-3\left(3^{2}\right)}{3\left(3^{2}\right)-6(3)}=\frac{18-27}{27-18}=-1$. The equation of the tangent line is then $y-3=-(x-3)$ or $y=-x+6$.
(c) For what value(s) of x (if any) will the tangent to this curve be horizontal? [You do not need to solve for both x and y-just show x in terms of y.] Show your work.

A tangent to the curve will be horizontal if $\frac{d y}{d x}=0$. This will only happen if the numerator in the equation found for $\frac{d y}{d x}$ in part (b) equals zero. So, we set $6 y-3 x^{2}=0$ and solve for x. This gives:
$3\left(2 y-x^{2}\right)=0$
$2 y-x^{2}=0$
$2 y=x^{2}$. So, $x= \pm \sqrt{2 y}$.

