1. (20 points) A small company called Maple, Inc. is designing a fancy gift box with a square base. The box must have a volume of $3000 \mathrm{~cm}^{3}$. The gift box has a lid which is to be made of a material that costs $\$ 1$ per square centimeter. The material for the sides of the box costs $\$ 0.75 \mathrm{per} \mathrm{cm}^{2}$, and the material for the bottom is $\$ 0.80$ per cm^{2}.
(a) (10 pts.) What are the dimensions of the cheapest gift box the company can make?

It turns out that Maple, Inc. also produces a cube-shaped wooden box to store jewelry. The cost of producing q of these boxes is given by

$$
C(q)=8600+0.0001(q-80)^{3}(q+90) .
$$

(b) (3 pts .) What is the marginal cost when 80 boxes are made? Show your work.
(This is a continuation of Problem 1).
(c) (3 pts.) The marginal cost of producing 95 of the cube-shaped jewelry boxes is about $\$ 13$ per box. Explain what this means in practical terms. (Your explanation should be understandable to someone who does not know calculus or economics language).
(d) (4 pts.) Let R and P denote, respectively, the revenue and the profit of Maple, Inc. from selling q of the cube-shaped jewelry boxes. Fill in the blank and circle the right choice in the paragraph below, as indicated.

If the profit P is maximized when 95 jewelry boxes are sold, then $R^{\prime}(95)=\ldots$ dollars per box (fill in the blank), and $P^{\prime \prime}(95)$ must be

POSITIVE / NEGATIVE / ZERO (circle the appropriate choice).

